Control over Charge Carrier Mobility in the Hole Transport Layer Enables Fast Colloidal Quantum Dot Infrared Photodetectors.

Solution-processed colloidal quantum dots (CQDs) are promising materials for photodetectors operating in the short-wavelength infrared region (SWIR). Devices typically rely on CQD-based hole transport layers (HTL), such as CQDs treated using 1,2-ethanedithiol. Herein, we find that these HTL materials exhibit low carrier mobility, limiting the photodiode response speed. We develop instead inverted (p-i-n) SWIR photodetectors operating at 1370 nm, employing NiOx as the HTL, ultimately enabling 4× shorter fall times in photodiodes (∼800 ns for EDT and ∼200 ns for NiOx). Optoelectronic simulations reveal that the high carrier mobility of NiOx enhances the electric field in the active layer, decreasing the overall transport time and increasing photodetector response time.

[1]  E. Sargent,et al.  Electron‐Transport Layers Employing Strongly Bound Ligands Enhance Stability in Colloidal Quantum Dot Infrared Photodetectors , 2022, Advanced materials.

[2]  E. Sargent,et al.  Quantum-Size-Effect Tuning Enables Narrowband IR Photodetection with Low Sunlight Interference. , 2022, Nano letters.

[3]  Xihua Wang,et al.  Heterogeneous Integration of Colloidal Quantum Dot Inks on Silicon Enables Highly Efficient and Stable Infrared Photodetectors , 2022, ACS Photonics.

[4]  E. Sargent,et al.  Controlled Crystal Plane Orientations in the ZnO Transport Layer Enable High‐Responsivity, Low‐Dark‐Current Infrared Photodetectors , 2022, Advanced materials.

[5]  S. Goossens,et al.  Colloidal Quantum Dot Image Sensors: Technology and Marketplace Opportunities , 2021, Information Display.

[6]  F. P. García de Arquer,et al.  Facet‐Oriented Coupling Enables Fast and Sensitive Colloidal Quantum Dot Photodetectors , 2021, Advanced materials.

[7]  F. P. García de Arquer,et al.  Colloidal quantum dot photodetectors with 10-ns response time and 80% quantum efficiency at 1,550 nm , 2021 .

[8]  Andrew H. Proppe,et al.  Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics , 2020, Nature Communications.

[9]  Oleksandr Voznyy,et al.  Field-emission from quantum-dot-in-perovskite solids , 2017, Nature Communications.

[10]  D. Georgiev,et al.  Modification of reactively sputtered NiOx thin films by pulsed UV laser irradiation , 2017 .

[11]  Rolf Aidam,et al.  SWIR detectors for low photon fluxes , 2016, Optical Engineering + Applications.

[12]  F. Menchini,et al.  Effect of growth parameters on the properties of RF-sputtered highly conductive and transparent p-type NiOx films , 2016 .

[13]  Do-Young Kim,et al.  Low‐Noise Multispectral Photodetectors Made from All Solution‐Processed Inorganic Semiconductors , 2014 .

[14]  P. Guyot-Sionnest,et al.  1/f noise in semiconductor and metal nanocrystal solids , 2014 .

[15]  M. Loi,et al.  Reducing charge trapping in PbS colloidal quantum dot solids , 2014 .

[16]  Qianfei Zhou,et al.  Transparent p-type conducting K-doped NiO films deposited by pulsed plasma deposition , 2012 .

[17]  S. C. Chen,et al.  Preparation and properties of p-type transparent conductive Cu-doped NiO films , 2011 .

[18]  Edward H. Sargent,et al.  Impact of dithiol treatment and air annealing on the conductivity, mobility, and hole density in PbS colloidal quantum dot solids , 2008 .

[19]  Peter Thorne,et al.  Advanced infrared detectors for multimode active and passive imaging applications , 2008, SPIE Defense + Commercial Sensing.

[20]  Douglas S. Malchow,et al.  Overview of SWIR detectors, cameras, and applications , 2008, SPIE Defense + Commercial Sensing.

[21]  Gregory D. Scholes,et al.  Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution , 2003 .

[22]  Larissa Levina,et al.  Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. , 2009, Nature nanotechnology.