Asymptotic-Preserving Schemes for Multiscale Hyperbolic and Kinetic Equations

[1]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases : notes added in 1951 , 1951 .

[2]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[3]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[4]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I) , 1969 .

[5]  D. Pullin,et al.  Direct simulation methods for compressible inviscid ideal-gas flow , 1980 .

[6]  A. Majda,et al.  Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit , 1981 .

[7]  S. M. Deshpande,et al.  Kinetic theory based new upwind methods for inviscid compressible flows , 1986 .

[8]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[9]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[10]  E. Larsen,et al.  Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes II , 1989 .

[11]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[12]  C. Schmeiser,et al.  Semiconductor equations , 1990 .

[13]  F. Poupaud,et al.  Diffusion approximation of the linear semiconductor Boltzmann equation : analysis of boundary layers , 1991 .

[14]  B. Perthame,et al.  Numerical passage from kinetic to fluid equations , 1991 .

[15]  Shi Jin,et al.  The discrete-ordinate method in diffusive regimes , 1991 .

[16]  F. Golse,et al.  Fluid dynamic limits of kinetic equations. I. Formal derivations , 1991 .

[17]  Patrick Le Tallec,et al.  Coupling Boltzmann and Euler equations without overlapping , 1992 .

[18]  R. Klein Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .

[19]  Shi Jin Runge-Kutta Methods for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1995 .

[20]  Z. Xin,et al.  The relaxation schemes for systems of conservation laws in arbitrary space dimensions , 1995 .

[21]  C. D. Levermore,et al.  Numerical Schemes for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1996 .

[22]  Irene M. Gamba,et al.  High field approximations to a Boltzmann-Poisson system and boundary conditions in a semiconductor , 1997 .

[23]  G. Toscani,et al.  Relaxation Schemes for Nonlinear Kinetic Equations , 1997 .

[24]  Giovanni Russo,et al.  Uniformly Accurate Schemes for Hyperbolic Systems with Relaxation , 1997 .

[25]  A. Klar An Asymptotic-Induced Scheme for Nonstationary Transport Equations in the Diffusive Limit , 1998 .

[26]  Lorenzo Pareschi,et al.  Diffusive Relaxation Schemes for Multiscale Discrete-Velocity Kinetic Equations , 1998 .

[27]  Axel Klar,et al.  An adaptive domain decomposition procedure for Boltzmann and Euler equations , 1998 .

[28]  H. Guillard,et al.  On the behaviour of upwind schemes in the low Mach number limit , 1999 .

[29]  Shi Jin,et al.  Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..

[30]  François Golse,et al.  The Convergence of Numerical Transfer Schemes in Diffusive Regimes I: Discrete-Ordinate Method , 1999 .

[31]  Y. Brenier,et al.  convergence of the vlasov-poisson system to the incompressible euler equations , 2000 .

[32]  Shi Jin,et al.  Uniformly Accurate Diffusive Relaxation Schemes for Multiscale Transport Equations , 2000, SIAM J. Numer. Anal..

[33]  C. Schmeiser,et al.  NUMERICAL PASSAGE FROM RADIATIVE HEAT TRANSFER TO NONLINEAR DIFFUSION MODELS , 2001 .

[34]  F. Poupaud,et al.  High-field Limit for the Vlasov-poisson-fokker-planck System , 2022 .

[35]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[36]  C. Villani Chapter 2 – A Review of Mathematical Topics in Collisional Kinetic Theory , 2002 .

[37]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[38]  Laurent Gosse,et al.  Asymptotic-preserving & well-balanced schemes for radiative transfer and the Rosseland approximation , 2004, Numerische Mathematik.

[39]  Tai-Ping Liu,et al.  Boltzmann Equation: Micro-Macro Decompositions and Positivity of Shock Profiles , 2004 .

[40]  Juan Soler,et al.  Multidimensional high-field limit of the electrostatic Vlasov-Poisson-Fokker-Planck system. , 2005 .

[41]  G. Russo,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2005 .

[42]  Pierre Degond,et al.  An asymptotically stable discretization for the Euler–Poisson system in the quasi-neutral limit , 2005 .

[43]  Lorenzo Pareschi,et al.  Fast algorithms for computing the Boltzmann collision operator , 2006, Math. Comput..

[44]  Gabriella Puppo,et al.  Implicit–Explicit Schemes for BGK Kinetic Equations , 2007, J. Sci. Comput..

[45]  Pierre Degond,et al.  An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit , 2007, J. Comput. Phys..

[46]  Luc Mieussens,et al.  Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics , 2008, J. Comput. Phys..

[47]  Thierry Goudon,et al.  Numerical Schemes of Diffusion Asymptotics and Moment Closures for Kinetic Equations , 2008, J. Sci. Comput..

[48]  Luc Mieussens,et al.  A New Asymptotic Preserving Scheme Based on Micro-Macro Formulation for Linear Kinetic Equations in the Diffusion Limit , 2008, SIAM J. Sci. Comput..

[49]  Shi Jin,et al.  A Micro-Macro Decomposition-Based Asymptotic-Preserving Scheme for the Multispecies Boltzmann Equation , 2010, SIAM J. Sci. Comput..

[50]  Stéphane Dellacherie,et al.  Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number , 2010, J. Comput. Phys..

[51]  Luc Mieussens,et al.  Analysis of an Asymptotic Preserving Scheme for Linear Kinetic Equations in the Diffusion Limit , 2009, SIAM J. Numer. Anal..

[52]  Fabrice Deluzet,et al.  Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality , 2010, J. Comput. Phys..

[53]  Shi Jin,et al.  A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources , 2009, J. Comput. Phys..

[54]  Shi Jin ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW , 2010 .

[55]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[56]  Shi Jin,et al.  An asymptotic preserving scheme for the vlasov-poisson-fokker-planck system in the high field regime , 2011 .

[57]  Giacomo Dimarco,et al.  Exponential Runge-Kutta Methods for Stiff Kinetic Equations , 2010, SIAM J. Numer. Anal..

[58]  Shi Jin,et al.  Author's Personal Copy a Class of Asymptotic-preserving Schemes for the Fokker–planck–landau Equation , 2011 .

[59]  P. Degond Asymptotic-Preserving Schemes for Fluid Models of Plasmas , 2011, 1104.1869.

[60]  P. Degond,et al.  All speed scheme for the low Mach number limit of the isentropic Euler equations , 2009, 0908.1929.

[61]  N. Crouseilles,et al.  An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: diffusion and high-field scaling limits. , 2011 .

[62]  Jingwei Hu,et al.  A Numerical Scheme for the Quantum Fokker-Planck-Landau Equation Efficient in the Fluid Regime , 2012 .

[63]  Jian‐Guo Liu,et al.  An All-Speed Asymptotic-Preserving Method for the Isentropic Euler and Navier-Stokes Equations , 2012 .

[64]  Bruno Després,et al.  Design of asymptotic preserving finite volume schemes for the hyperbolic heat equation on unstructured meshes , 2012, Numerische Mathematik.

[65]  Fabrice Deluzet,et al.  Numerical approximation of the Euler-Maxwell model in the quasineutral limit , 2011, J. Comput. Phys..

[66]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[67]  Pierre Degond,et al.  An Asymptotic-Preserving all-speed scheme for the Euler and Navier-Stokes equations , 2011, J. Comput. Phys..

[68]  Shi Jin,et al.  A BGK-penalization based asymptotic-preserving scheme for the multispecies Boltzmann equation ∗ , 2012 .

[69]  Francis Filbet,et al.  A NUMERICAL SCHEME FOR THE QUANTUM BOLTZMANN EQUATION WITH STIFF COLLISION TERMS , 2012 .

[70]  Samuel Kokh,et al.  Large Time Step and Asymptotic Preserving Numerical Schemes for the Gas Dynamics Equations with Source Terms , 2013, SIAM J. Sci. Comput..

[71]  Li Wang,et al.  Asymptotic-Preserving Numerical Schemes for the Semiconductor Boltzmann Equation Efficient in the High Field Regime , 2013, SIAM J. Sci. Comput..

[72]  Shi Jin,et al.  A Successive Penalty-Based Asymptotic-Preserving Scheme for Kinetic Equations , 2013, SIAM J. Sci. Comput..

[73]  Xu Yang,et al.  Exponential Runge-Kutta Methods for the Multispecies Boltzmann Equation , 2014 .

[74]  Qin Li,et al.  Exponential Runge-Kutta for the inhomogeneous Boltzmann equations with high order of accuracy , 2014, J. Comput. Phys..

[75]  G. Dimarco,et al.  Numerical methods for plasma physics in collisional regimes , 2014, Journal of Plasma Physics.

[76]  Tao Xiong,et al.  Analysis of Asymptotic Preserving DG-IMEX Schemes for Linear Kinetic Transport Equations in a Diffusive Scaling , 2013, SIAM J. Numer. Anal..

[77]  Claus-Dieter Munz,et al.  A Weakly Asymptotic Preserving Low Mach Number Scheme for the Euler Equations of Gas Dynamics , 2014, SIAM J. Sci. Comput..

[78]  Jingwei Hu,et al.  An asymptotic-preserving scheme for the semiconductor Boltzmann equation toward the energy-transport limit , 2013, J. Comput. Phys..

[79]  Shi Jin,et al.  Asymptotic-preserving methods for hyperbolic and transport equations with random inputs and diffusive scalings , 2015, J. Comput. Phys..

[80]  Qin Li,et al.  Asymptotic-Preserving Exponential Methods for the Quantum Boltzmann Equation with High-Order Accuracy , 2013, J. Sci. Comput..

[81]  Tao Xiong,et al.  High order asymptotic preserving DG-IMEX schemes for discrete-velocity kinetic equations in a diffusive scaling , 2013, J. Comput. Phys..

[82]  Qin Li,et al.  Diffusion approximations and domain decomposition method of linear transport equations: Asymptotics and numerics , 2014, J. Comput. Phys..

[83]  P. V. F. Edelmann,et al.  New numerical solver for flows at various Mach numbers , 2014, 1409.8289.

[84]  Shi Jin,et al.  An asymptotic-preserving scheme for the semiconductor Boltzmann equation with two-scale collisions: A splitting approach , 2015 .

[85]  Tao Xiong,et al.  High order asymptotic preserving nodal discontinuous Galerkin IMEX schemes for the BGK equation , 2014, J. Comput. Phys..

[86]  M. Romé,et al.  Low-power radio-frequency excitation as a plasma source in a Penning–Malmberg trap: a systematic study , 2015, Journal of Plasma Physics.

[87]  Nicolas Vauchelet,et al.  Numerical High-Field Limits in Two-Stream Kinetic Models and 1D Aggregation Equations , 2016, SIAM J. Sci. Comput..

[88]  Qin Li,et al.  Implicit Asymptotic Preserving Method for Linear Transport Equations , 2016, 1602.00746.

[89]  Hamed Zakerzadeh On the mach-uniformity of the Lagrange-projection scheme , 2016 .

[90]  R. Turpault,et al.  An Asymptotic-Preserving Scheme for Systems of Conservation Laws with Source Terms on 2D Unstructured Meshes , 2016 .

[91]  Chang Liu,et al.  A unified gas-kinetic scheme for continuum and rarefied flows,direct modeling,and full Boltzmann collision term , 2014 .

[92]  Shi Jin,et al.  Uniform spectral convergence of the stochastic Galerkin method for the linear transport equations with random inputs in diffusive regime and a micro–macro decomposition-based asymptotic-preserving method , 2017, Research in the Mathematical Sciences.

[93]  Raphaël Loubère,et al.  Study of a New Asymptotic Preserving Scheme for the Euler System in the Low Mach Number Limit , 2017, SIAM J. Sci. Comput..

[94]  Fabrice Deluzet,et al.  Asymptotic-Preserving methods and multiscale models for plasma physics , 2016, J. Comput. Phys..

[95]  Liu Liu,et al.  An Asymptotic-Preserving Stochastic Galerkin Method for the Semiconductor Boltzmann Equation with Random Inputs and Diffusive Scalings , 2017, Multiscale Model. Simul..

[96]  Shi Jin,et al.  The Vlasov-Poisson-Fokker-Planck System with Uncertainty and a One-dimensional Asymptotic Preserving Method , 2017, Multiscale Model. Simul..

[97]  Shi Jin,et al.  An asymptotic-preserving stochastic Galerkin method for the radiative heat transfer equations with random inputs and diffusive scalings , 2017, J. Comput. Phys..

[98]  S. Noelle,et al.  A note on the stability of implicit-explicit flux-splittings for stiff systems of hyperbolic conservation laws , 2018 .