Nailz: Sensing Hand Input with Touch Sensitive Nails

Touches between the fingers of an unencumbered hand represent a ready-to-use, eyes-free and expressive input space suitable for interacting with wearable devices such as smart glasses or watches. While prior work has focused on touches to the inner surface of the hand, touches to the nails, a practical site for mounting sensing hardware, have been comparatively overlooked. We extend prior implementations of single touch sensing nails to a full set of five and explore their potential for wearable input. We present design ideas and an input space of 144 touches (taps, flicks and swipes) derived from an ideation workshop. We complement this with data from two studies characterizing the subjective comfort and objective characteristics (task time, accuracy) of each touch. We conclude by synthesizing this material into a set of 29 viable nail touches, assessing their performance in a final study and illustrating how they could be used by presenting, and qualitatively evaluating, two example applications.

[1]  Da-Yuan Huang,et al.  DigitSpace: Designing Thumb-to-Fingers Touch Interfaces for One-Handed and Eyes-Free Interactions , 2016, CHI.

[2]  Desney S. Tan,et al.  Skinput: appropriating the body as an input surface , 2010, CHI.

[3]  Karan Singh,et al.  Eurographics/siggraph Symposium on Computer Animation (2003) Handrix: Animating the Human Hand , 2003 .

[4]  Ian Oakley,et al.  Designing Socially Acceptable Hand-to-Face Input , 2018, UIST.

[5]  Pourang Irani,et al.  Consumed endurance: a metric to quantify arm fatigue of mid-air interactions , 2014, CHI.

[6]  Ian Oakley,et al.  Fingers and Angles , 2018, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol..

[7]  Jacob Cohen Measurement Educational and Psychological Educational and Psychological Measurement Eta-squared and Partial Eta-squared in Fixed Factor Anova Designs Educational and Psychological Measurement Additional Services and Information For , 2022 .

[8]  Shwetak N. Patel,et al.  Finexus: Tracking Precise Motions of Multiple Fingertips Using Magnetic Sensing , 2016, CHI.

[9]  Da-Yuan Huang,et al.  SegTouch: Enhancing Touch Input While Providing Touch Gestures on Screens Using Thumb-To-Index-Finger Gestures , 2017, CHI Extended Abstracts.

[10]  Suranga Nanayakkara,et al.  Thumb-In-Motion: Evaluating Thumb-to-Ring Microgestures for Athletic Activity , 2018, SUI.

[11]  Patrick Olivier,et al.  Digits: freehand 3D interactions anywhere using a wrist-worn gloveless sensor , 2012, UIST.

[12]  Sean White,et al.  uTrack: 3D input using two magnetic sensors , 2013, UIST.

[13]  Gierad Laput,et al.  ViBand: High-Fidelity Bio-Acoustic Sensing Using Commodity Smartwatch Accelerometers , 2016, UIST.

[14]  Ian Oakley,et al.  The Flat Finger: Exploring Area Touches on Smartwatches , 2016, CHI.

[15]  Li-Wei Chan,et al.  CyclopsRing: Enabling Whole-Hand and Context-Aware Interactions Through a Fisheye Ring , 2015, UIST.

[16]  Stephen A. Brewster,et al.  I Am The Passenger: Challenges in Supporting AR/VR HMDs In-Motion , 2017, AutomotiveUI.

[17]  Bongwon Suh,et al.  OctaRing: Examining Pressure-Sensitive Multi-Touch Input on a Finger Ring Device , 2016, UIST.

[18]  Suranga Nanayakkara,et al.  Digital Digits , 2015, ACM Comput. Surv..

[19]  Xiang Cao,et al.  Detecting and leveraging finger orientation for interaction with direct-touch surfaces , 2009, UIST '09.

[20]  J. J. Higgins,et al.  The aligned rank transform for nonparametric factorial analyses using only anova procedures , 2011, CHI.

[21]  Xing-Dong Yang,et al.  Magic finger: always-available input through finger instrumentation , 2012, UIST.

[22]  Mark Billinghurst,et al.  Design considerations for combining augmented reality with intelligent tutors , 2018, Comput. Graph..

[23]  Iina Aaltonen,et al.  Use of wearable and augmented reality technologies in industrial maintenance work , 2016, MindTrek.

[24]  Teddy Seyed,et al.  User Elicitation on Single-hand Microgestures , 2016, CHI.

[25]  Mike Y. Chen,et al.  TouchRing: subtle and always-available input using a multi-touch ring , 2016, MobileHCI Adjunct.

[26]  Tovi Grossman,et al.  NanoStylus: Enhancing Input on Ultra-Small Displays with a Finger-Mounted Stylus , 2015, UIST.

[27]  Eric Paulos,et al.  AlterNail: Ambient, Batteryless, Stateful, Dynamic Displays at your Fingertips , 2017, CHI.

[28]  Robert Xiao,et al.  Estimating 3D Finger Angle on Commodity Touchscreens , 2015, ITS.

[29]  Antti Jylhä,et al.  Designing a Willing-to-Use-in-Public Hand Gestural Interaction Technique for Smart Glasses , 2016, CHI.

[30]  Pourang Irani,et al.  D-SWIME: A Design Space for Smartwatch Interaction Techniques Supporting Mobility and Encumbrance , 2018, CHI.

[31]  Teng Han,et al.  Combining Ring Input with Hand Tracking for Precise, Natural Interaction with Spatial Analytic Interfaces , 2016, SUI.

[32]  Joseph A. Paradiso,et al.  NailO: Fingernails as an Input Surface , 2015, CHI.

[33]  Gregory D. Abowd,et al.  FingerSound , 2017, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol..

[34]  Raphael Wimmer,et al.  Exploring the benefits of fingernail displays , 2013, CHI Extended Abstracts.

[35]  Daniel Mendes,et al.  VRRRRoom: Virtual Reality for Radiologists in the Reading Room , 2017, CHI.

[36]  Gregory D. Abowd,et al.  FingerPing: Recognizing Fine-grained Hand Poses using Active Acoustic On-body Sensing , 2018, CHI.

[37]  Jürgen Steimle,et al.  Multi-Touch Skin: A Thin and Flexible Multi-Touch Sensor for On-Skin Input , 2018, CHI.

[38]  Mohamed Soliman,et al.  FingerInput: Capturing Expressive Single-Hand Thumb-to-Finger Microgestures , 2018, ISS.

[39]  Shwetak N. Patel,et al.  DigiTouch: Reconfigurable Thumb-to-Finger Input and Text Entry on Head-mounted Displays , 2017, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol..

[40]  J. Tukey,et al.  Variations of Box Plots , 1978 .

[41]  Hugo Fuks,et al.  Beauty tech nails: interactive technology at your fingertips , 2014, TEI '14.

[42]  Sean White,et al.  Nenya: subtle and eyes-free mobile input with a magnetically-tracked finger ring , 2011, CHI.

[43]  Niels Henze,et al.  Understanding the ergonomic constraints in designing for touch surfaces , 2017, MobileHCI.

[44]  Jean Vanderdonckt,et al.  Gestures for Smart Rings: Empirical Results, Insights, and Design Implications , 2018, Conference on Designing Interactive Systems.