Software tools for stochastic programming: A Stochastic Programming Integrated Environment (SPInE)

SP models combine the paradigm of dynamic linear programming with modelling of random parameters, providing optimal decisions which hedge against future uncertainties. Advances in hardware as well as software techniques and solution methods have made SP a viable optimisation tool. We identify a growing need for modelling systems which support the creation and investigation of SP problems. Our SPInE system integrates a number of components which include a flexible modelling tool (based on stochastic extensions of the algebraic modelling languages AMPL and MPL), stochastic solvers, as well as special purpose scenario generators and database tools. We introduce an asset/liability management model and illustrate how SPInE can be used to create and process this model as a multistage SP application.

[1]  Andrzej Ruszczynski,et al.  Parallel decomposition of multistage stochastic programming problems , 1993, Math. Program..

[2]  Emmanuel Fragnière,et al.  An approach to deal with uncertainty in energy and environmental planning: the MARKAL case , 2000 .

[3]  M. V. F. Pereira,et al.  Multi-stage stochastic optimization applied to energy planning , 1991, Math. Program..

[4]  Linos F. Frantzeskakis,et al.  A Successive Linear Approximation Procedure for Stochastic, Dynamic Vehicle Allocation Problems , 1990, Transp. Sci..

[5]  M. D. Wilkinson,et al.  Management science , 1989, British Dental Journal.

[6]  Horand I. Gassmann,et al.  Mslip: A computer code for the multistage stochastic linear programming problem , 1990, Math. Program..

[7]  Gautam Mitra,et al.  RISK AND RETURN ANALYSIS OF A MULTI­ PERIOD STRATEGIC PLANNING PROBLEM , 1997 .

[8]  Laureano F. Escudero,et al.  Schumann, a modeling framework for supply chain management under uncertainty , 1999, Eur. J. Oper. Res..

[9]  Alan J. King,et al.  A Standard Input Format for Multiperiod Stochastic Linear Programs , 1987 .

[10]  Peter Kall,et al.  SLP-IOR: An interactive model management system for stochastic linear programs , 1996, Math. Program..

[11]  Robert Entriken Language Constructs for Modeling Stochastic Linear Programs , 2001, Ann. Oper. Res..

[12]  Robert D. Doverspike,et al.  Network planning with random demand , 1994, Telecommun. Syst..

[13]  Andrzej Stachurski,et al.  Parallel Optimization: Theory, Algorithms and Applications , 2000, Parallel Distributed Comput. Pract..

[14]  Gautam Mitra,et al.  Modelling and analysis of multistage stochastic programming problems: A software environment☆ , 1997 .

[15]  J. Shapiro Modeling the Supply Chain , 2000 .

[16]  Y. Censor,et al.  Parallel Optimization: Theory, Algorithms, and Applications , 1997 .

[17]  Warren B. Powell,et al.  A COMPARATIVE REVIEW OF ALTERNATIVE ALGORITHMS FOR THE DYNAMIC VEHICLE ALLOCATION PROBLEM , 1988 .

[18]  A. M. Ireland,et al.  Scenario formulation in an algebraic modelling language , 1995, Ann. Oper. Res..

[19]  A. M. Ireland,et al.  On the formulation of stochastic linear programs using algebraic modelling languages , 1996, Ann. Oper. Res..

[20]  R. Wets,et al.  Designing approximation schemes for stochastic optimization problems, in particular for stochastic programs with recourse , 1986 .

[21]  R. Wets,et al.  L-SHAPED LINEAR PROGRAMS WITH APPLICATIONS TO OPTIMAL CONTROL AND STOCHASTIC PROGRAMMING. , 1969 .

[22]  John M. Mulvey,et al.  Applying the progressive hedging algorithm to stochastic generalized networks , 1991, Ann. Oper. Res..

[23]  S. Andradóttir A Scaled Stochastic Approximation Algorithm , 1996 .

[24]  Alan S. Manne,et al.  Nested decomposition for dynamic models , 1974, Math. Program..

[25]  A. Charnes,et al.  Chance-Constrained Programming , 1959 .

[26]  C. R. Glassey Nested Decomposition and Multi-Stage Linear Programs , 1973 .

[27]  Anne B. Koehler,et al.  Ax optimal policy for sampling from uncertain distributions , 1978 .

[28]  J. Cockcroft Investment in Science , 1962, Nature.

[29]  William T. Ziemba,et al.  A Bank Asset and Liability Management Model , 1986, Oper. Res..

[30]  Stein W. Wallace,et al.  Generating Scenario Trees for Multistage Decision Problems , 2001, Manag. Sci..

[31]  K. A. Ariyawansa,et al.  Performance of a benchmark parallel implementation of the Van Slyke and Wets algorithm for two-stage stochastic programs on the Sequent/Balance , 1991, Concurr. Pract. Exp..

[32]  Jorge J. Moré,et al.  The NEOS Server , 1998 .

[33]  David Kendrick,et al.  GAMS, a user's guide , 1988, SGNM.

[34]  G. Infanger,et al.  Planning under uncertainty solving large-scale stochastic linear programs , 1992 .

[35]  Stephen J. Wright Solving optimization problems on computational grids. , 2001 .

[36]  Julia L. Higle,et al.  Stochastic Decomposition: A Statistical Method for Large Scale Stochastic Linear Programming , 1996 .

[37]  Michael A. H. Dempster,et al.  Evpi-Based Importance Sampling Solution Procedures for Multistage Stochastic Linear Programmes on Parallel Mimd Architectures , 1997 .

[38]  Gautam Mitra,et al.  Computational solution of capacity planning models under uncertainty , 2000, Parallel Comput..

[39]  Linus Schrage,et al.  OR Practice - A Scenario Approach to Capacity Planning , 1989, Oper. Res..

[40]  Michael A. H. Dempster,et al.  Dynamic Stochastic Programming for Asset-Liability Management , 1998 .

[41]  Liqun Qi,et al.  Continuous approximation schemes for stochastic programs , 1995, Ann. Oper. Res..

[42]  V. Dupac A DYNAMIC STOCHASTIC APPROXIMATION METHOD , 1965 .

[43]  J. Mulvey Generating Scenarios for the Towers Perrin Investment System , 1996 .

[44]  J. F. Benders Partitioning procedures for solving mixed-variables programming problems , 1962 .

[45]  G. Mitra,et al.  Computational aspects of alternative portfolio selection models in the presence of discrete asset choice constraints , 2001 .

[46]  Brian W. Kernighan,et al.  AMPL: A Modeling Language for Mathematical Programming , 1993 .

[47]  Sigrún Andradóttir,et al.  A Stochastic Approximation Algorithm with Varying Bounds , 1995, Oper. Res..

[48]  M. Dempster On stochastic programming. II: Dynamic problems under risk , 1988 .

[49]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[50]  D. Sworder,et al.  Introduction to stochastic control , 1972 .

[51]  Arthur M. Geoffrion Indexing in Modeling Languages for Mathematical Programming , 1992 .