Chiral hexagonal cellular sandwich structure: a vibro-acoustic assessment

In this work we describe the vibroacoustic behavior of a novel concept of core for sandwich structures featuring auxetic characteristics, enhanced shear stiffness and compressive strength compared to classical cellular cores in sandwich components for sandwich applications. The out-plane properties and density values are described in terms of geometric parameters of the honeycomb unit cells. Opposite to classical honeycomb cellular applications, the hexagonal chiral structure presents a noncentresymemetric configuration, i.e., a "mirror" symmetrical topology. The derived mechanical properties are used to assess the modal behaviour and modal densities of sandwich plate elements with chiral and standard cellular cores. The analytical findings are backed up by structural tests on chiral honeycomb plates and sandwich beams.