Computing memory functions from molecular dynamics simulations

We propose a new method to compute reliable estimates for memory functions of dynamical variables from molecular dynamics simulations. The key point is that the dynamical variable under consideration, which we take to be the velocity of a fluid particle, is modeled as an autoregressive stochastic process. The parameters of this stochastic process can be determined from molecular dynamics trajectories using efficient algorithms that are well established in signal processing. The procedure is also referred to as the maximum entropy method. From the autoregressive model of the velocity autocorrelation function we compute the one-sided z transform of the discretized memory function and the memory function itself. Using liquid argon as a simple model system, we demonstrate that the autocorrelation function and its power spectrum can be approximated to almost arbitrary precision. The same is therefore true for the memory function, which is calculated within the same stochastic model.

[1]  Konrad Hinsen,et al.  Numerical Python , 1996 .

[2]  L. Sjogren Numerical results on the velocity correlation function in liquid argon and rubidium , 1980 .

[3]  A. Papoulis Signal Analysis , 1977 .

[4]  J. Makhoul,et al.  Linear prediction: A tutorial review , 1975, Proceedings of the IEEE.

[5]  A. Rahman Density fluctuations in liquid rubidium. II. Molecular-dynamics calculations , 1974 .

[6]  C. Hoheisel,et al.  The friction coefficient of a Lennard-Jones fluid from the random force autocorrelation function determined as a memory function by molecular dynamics calculations , 1989 .

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  日本物理学会,et al.  Progress in Theoretical Physics , 1946, Nature.

[9]  小谷 正雄 日本物理学会誌及びJournal of the Physical Society of Japanの月刊について , 1955 .

[10]  P. Grigolini,et al.  Memory function approaches to stochastic problems in condensed matter , 1985 .

[11]  J. Cooley,et al.  The Fast Fourier Transform , 1975 .

[12]  Bruce J. Berne,et al.  On the Calculation of Autocorrelation Functions of Dynamical Variables , 1966 .

[13]  Konrad Hinsen The molecular modeling toolkit: A new approach to molecular simulations , 2000 .

[14]  E. Ungureanu,et al.  Molecular Physics , 2008, Nature.

[15]  J. L. Hock,et al.  An exact recursion for the composite nearest‐neighbor degeneracy for a 2×N lattice space , 1984 .

[16]  J. Makhoul Stable and efficient lattice methods for linear prediction , 1977 .

[17]  William H. Press,et al.  Numerical recipes in C , 2002 .

[18]  D. Chaturvedi,et al.  Memory Effects and Dynamical Correlations in Liquid Argon , 1972 .

[19]  Aneesur Rahman,et al.  Correlations in the Motion of Atoms in Liquid Argon , 1964 .

[20]  Ieee Acoustics,et al.  IEEE Transactions on Acoustics, Speech, and Signal Processing , 1974 .

[21]  James Durbin,et al.  The fitting of time series models , 1960 .

[22]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[23]  S. Jain,et al.  Memory effects and dynamical correlations in liquid argon and sodium , 1971 .

[24]  Shuichi Nosé,et al.  Constant Temperature Molecular Dynamics Methods , 1991 .

[25]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[26]  A. Stoneham JOURNAL-OF-PHYSICS-C - SOLID-STATE PHYSICS AND SEMICONDUCTOR SCIENCE AND TECHNOLOGY , 1985 .

[27]  Editors , 1986, Brain Research Bulletin.

[28]  P. A. Egelstaff Collective Modes and Many Body Forces in Fluids: An Experimental Study , 1987 .

[29]  Gerald R. Kneller,et al.  nMOLDYN: A program package for a neutron scattering oriented analysis of Molecular Dynamics simulations , 1995 .

[30]  K. Lucas,et al.  The viscosity of simple dense fluids ; a memory-function approach , 1979 .

[31]  Stuart A. Rice,et al.  Memory Effects and the Autocorrelation Function of a Dynamical Variable , 1967 .

[32]  H. Mori A Continued-Fraction Representation of the Time-Correlation Functions , 1965 .

[33]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[34]  Robert Zwanzig,et al.  Statistical Mechanics of Irreversibility , 1966 .

[35]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .