Transcriptomic profiling identifies host-derived biomarker panels for assessing cerebral malaria

[1]  G. C. Rogers,et al.  GLUT3/SLC2A3 Is an Endogenous Marker of Hypoxia in Prostate Cancer Cell Lines and Patient-Derived Xenograft Tumors , 2022, Diagnostics.

[2]  S. Groves,et al.  PAD4 controls chemoattractant production and neutrophil trafficking in malaria , 2021, Journal of leukocyte biology.

[3]  L. Marchionni,et al.  Host Blood Gene Signatures Can Detect the Progression to Severe and Cerebral Malaria , 2021, Frontiers in Cellular and Infection Microbiology.

[4]  J. Adjaye,et al.  Transcriptome-based analysis of blood samples reveals elevation of DNA damage response, neutrophil degranulation, cancer and neurodegenerative pathways in Plasmodium falciparum patients , 2021, Malaria journal.

[5]  S. Basak,et al.  Sequential dysregulated plasma levels of angiopoietins (ANG-2 and ratios of ANG-2/ANG-1) are associated with malaria severity and mortality among hospital admitted cases in South Bastar Region of Chhattisgarh, Central India , 2021, Pathogens and global health.

[6]  Scott R. Presnell,et al.  Development of a fixed module repertoire for the analysis and interpretation of blood transcriptome data , 2021, Nature Communications.

[7]  Xiaochen Bo,et al.  clusterProfiler 4.0: A universal enrichment tool for interpreting omics data , 2021, Innovation.

[8]  Hai-Liang Zhang,et al.  Carbonic Anhydrase 4 serves as a Clinicopathological Biomarker for Outcomes and Immune Infiltration in Renal Cell Carcinoma, Lower Grade Glioma, Lung Adenocarcinoma and Uveal Melanoma , 2020, Journal of Cancer.

[9]  G. Nishanth,et al.  Blood-Brain Barrier in Cerebral Malaria: Pathogenesis and Therapeutic Intervention. , 2019, Trends in parasitology.

[10]  F. Sierro,et al.  The Ins and Outs of Cerebral Malaria Pathogenesis: Immunopathology, Extracellular Vesicles, Immunometabolism, and Trained Immunity , 2019, Front. Immunol..

[11]  Y. J. Chai,et al.  Upregulation of SLC2A3 gene and prognosis in colorectal carcinoma: analysis of TCGA data , 2019, BMC Cancer.

[12]  Yung-Hyun Choi,et al.  Induction of Angiogenesis by Malarial Infection through Hypoxia Dependent Manner , 2019, The Korean journal of parasitology.

[13]  P. Kremsner,et al.  The blood transcriptome of childhood malaria , 2019, EBioMedicine.

[14]  C. John,et al.  Whole-Blood Transcriptional Signatures Composed of Erythropoietic and NRF2-Regulated Genes Differ Between Cerebral Malaria and Severe Malarial Anemia , 2018, The Journal of infectious diseases.

[15]  W. Sly,et al.  Role of carbonic anhydrases in skin wound healing , 2017, Experimental &Molecular Medicine.

[16]  P. V. van Genderen,et al.  Systematic review of the role of angiopoietin-1 and angiopoietin-2 in Plasmodium species infections: biomarkers or therapeutic targets? , 2016, Malaria Journal.

[17]  Ryung S. Kim,et al.  Activated Neutrophils Are Associated with Pediatric Cerebral Malaria Vasculopathy in Malawian Children , 2016, mBio.

[18]  S. Satpathi,et al.  Pathogenesis of cerebral malaria: new diagnostic tools, biomarkers, and therapeutic approaches , 2015, Front. Cell. Infect. Microbiol..

[19]  K. Kusi,et al.  High Plasma Levels of Soluble Intercellular Adhesion Molecule (ICAM)-1 Are Associated with Cerebral Malaria , 2013, PloS one.

[20]  L. Manning,et al.  The mechanistic, diagnostic and prognostic utility of biomarkers in severe malaria. , 2013, Biomarkers in medicine.

[21]  N. Lucchi,et al.  Plasma levels of angiopoietin-1 and -2 predict cerebral malaria outcome in Central India , 2011, Malaria Journal.

[22]  D. Streiner,et al.  Combinations of Host Biomarkers Predict Mortality among Ugandan Children with Severe Malaria: A Retrospective Case-Control Study , 2011, PloS one.

[23]  M. Christ-Crain,et al.  Prognostic value of procalcitonin in community-acquired pneumonia , 2010, European Respiratory Journal.

[24]  T. Yeo,et al.  Angiopoietin-2 is increased in sepsis and inversely associated with nitric oxide-dependent microvascular reactivity , 2010, Critical care.

[25]  M. Perkins,et al.  A Large Proportion of P. falciparum Isolates in the Amazon Region of Peru Lack pfhrp2 and pfhrp3: Implications for Malaria Rapid Diagnostic Tests , 2010, PloS one.

[26]  K. Kain,et al.  Whole blood angiopoietin-1 and -2 levels discriminate cerebral and severe (non-cerebral) malaria from uncomplicated malaria , 2009, Malaria Journal.

[27]  D. Sullivan,et al.  Plasmodium falciparum-infected erythrocytes induce NF-kappaB regulated inflammatory pathways in human cerebral endothelium. , 2009, Blood.

[28]  K. Kain,et al.  Serum Angiopoietin-1 and -2 Levels Discriminate Cerebral Malaria from Uncomplicated Malaria and Predict Clinical Outcome in African Children , 2009, PloS one.

[29]  Steve Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[30]  R. Price,et al.  Angiopoietin-2 is associated with decreased endothelial nitric oxide and poor clinical outcome in severe falciparum malaria , 2008, Proceedings of the National Academy of Sciences.

[31]  R. Ned,et al.  Malaria Journal Plasma Ip-10, Apoptotic and Angiogenic Factors Associated with Fatal Cerebral Malaria in India , 2008 .

[32]  C. Wongsrichanalai,et al.  A review of malaria diagnostic tools: microscopy and rapid diagnostic test (RDT). , 2007, The American journal of tropical medicine and hygiene.

[33]  Sean R. Davis,et al.  GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor , 2007, Bioinform..

[34]  M. Boivin,et al.  Cognitive Impairment After Cerebral Malaria in Children: A Prospective Study , 2007, Pediatrics.

[35]  H. Augustin,et al.  Angiopoietins: a link between angiogenesis and inflammation. , 2006, Trends in immunology.

[36]  S. Horvath,et al.  Evidence for anti-Burkitt tumour globulins in Burkitt tumour patients and healthy individuals. , 1967, British Journal of Cancer.

[37]  J. Baker,et al.  Genetic diversity of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and its effect on the performance of PfHRP2-based rapid diagnostic tests. , 2005, The Journal of infectious diseases.

[38]  Simon P Harding,et al.  Prognostic significance and course of retinopathy in children with severe malaria. , 2004, Archives of ophthalmology.

[39]  W. V. van Venrooij,et al.  Expression and activity of citrullinating peptidylarginine deiminase enzymes in monocytes and macrophages , 2004, Annals of the rheumatic diseases.

[40]  Wenjiang J. Fu,et al.  Differentiating the pathologies of cerebral malaria by postmortem parasite counts , 2004, Nature Medicine.

[41]  C. Hatz Management of Severe Malaria. A Practical Handbook, 2nd edition. Geneva: World Health Organization, 2000. vii+70pp. Price Sw.fr 15.-/US$ 13.50 (in developing countries Sw.fr 10.50). ISBN 92-4-154523-2. Available in English; French and Spanish in preparation , 2001 .

[42]  W. Sly,et al.  Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. , 2001, The American journal of pathology.

[43]  T. Joos,et al.  A biomarker panel to discriminate between systemic inflammatory response syndrome and sepsis and sepsis severity , 2010, Journal of emergencies, trauma, and shock.