The science process for selecting the landing site for the 2011 Mars Science Laboratory

The process of identifying the landing site for NASA’s 2011 Mars Science Laboratory (MSL) began in 2005 by defining science objectives, related to evaluating the potential habitability of a location on Mars, and engineering parameters, such as elevation, latitude, winds, and rock abundance, to determine acceptable surface and atmospheric characteristics. Nearly 60 candidate sites were considered at a series of open workshops in the years leading up to the launch. During that period, iteration between evolving engineering constraints and the relative science potential of candidate sites led to consensus on four final sites. The final site will be selected in the Spring of 2011 by NASA’s Associate Administrator for the Science Mission Directorate. This paper serves as a record of landing site selection activities related primarily to science, an inventory of the number and variety of sites proposed, and a summary of the science potential of the highest ranking sites.

[1]  François Poulet,et al.  OMEGA: Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité , 2004 .

[2]  Steven W. Squyres,et al.  Alpha Particle X‐Ray Spectrometer (APXS): Results from Gusev crater and calibration report , 2006 .

[3]  K. Gwinner,et al.  Evolution and depositional environments of the Eberswalde fan delta, Mars , 2008 .

[4]  William E. Dietrich,et al.  Martian Layered Fluvial Deposits: Implications for Noachian Climate Scenarios , 2003 .

[5]  P. Allemand,et al.  Fluvial and lacustrine activity on layered deposits in Melas Chasma, Valles Marineris, Mars , 2005 .

[6]  L. Crumpler,et al.  Inverted channel deposits on the floor of Miyamoto crater, Mars , 2010 .

[7]  William H. Farrand,et al.  Overview of the Opportunity Mars Exploration Rover mission to Meridiani Planum: Eagle crater to Purgatory ripple , 2006 .

[8]  M. Bourke,et al.  Dynamic river channels suggest a long‐lived Noachian crater lake on Mars , 2005 .

[9]  New Landing Site Proposal for Mars Science Laboratory (MSL) in Xanthe Terra , 2010 .

[10]  R. Milliken,et al.  Sources and sinks of clay minerals on Mars , 2010 .

[11]  J. Bourgeois,et al.  Stratigraphic architectures spotted in southern Melas Chasma, Valles Marineris, Mars: COMMENT COMMENT , 2007 .

[12]  A. McEwen,et al.  HiRISE imaging of impact megabreccia and sub-meter aqueous strata in Holden Crater, Mars , 2008 .

[13]  J. Grant,et al.  Drainage evolution in the Margaritifer Sinus region, Mars , 2002 .

[14]  Randolph L. Kirk,et al.  Compositional stratigraphy of clay‐bearing layered deposits at Mawrth Vallis, Mars , 2008 .

[15]  G. Neukum,et al.  Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 2. Aqueous alteration of the crust , 2007 .

[16]  A. Knoll,et al.  Water Activity and the Challenge for Life on Early Mars , 2008, Science.

[17]  David E. Smith,et al.  The Mars Observer laser altimeter investigation , 1992 .

[18]  Dawn Y Sumner,et al.  Preservation of martian organic and environmental records: final report of the Mars biosignature working group. , 2011, Astrobiology.

[19]  R. Phillips,et al.  The stratigraphy of Meridiani Planum, Mars, and implications for the layered deposits' origin , 2008 .

[20]  S. Murchie,et al.  Composition, Morphology, and Stratigraphy of Noachian Crust around the Isidis basin , 2009 .

[21]  K. Edgett The sedimentary rocks of Sinus Meridiani: Five key observations from data acquired by the Mars Global Surveyor and Mars Odyssey orbiters , 2005 .

[22]  K Davis,et al.  Localization and Physical Property Experiments Conducted by Opportunity at Meridiani Planum , 2004, Science.

[23]  J. Grotzinger,et al.  Paleoclimate of Mars as captured by the stratigraphic record in Gale Crater , 2010 .

[24]  Patrick Pinet,et al.  Martian surface mineralogy from Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité on board the Mars Express spacecraft (OMEGA/MEx): Global mineral maps , 2007 .

[25]  A. McEwen,et al.  Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) , 2007 .

[26]  Analysis of Layered Deposits in Terby Crater (Hellas Region, Mars) Using Multiple Datasets MOC, THEMIS and OMEGA/MEX Data , 2005 .

[27]  John F. Mustard,et al.  Orbital Identification of Carbonate-Bearing Rocks on Mars , 2008 .

[28]  A. McEwen,et al.  Mineralogy and stratigraphy of phyllosilicate‐bearing and dark mantling units in the greater Mawrth Vallis/west Arabia Terra area: Constraints on geological origin , 2010 .

[29]  R. E. Arvidson,et al.  Phyllosilicates on Mars and implications for early martian climate , 2005, Nature.

[30]  N. Izenberg,et al.  Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument , 2008, Nature.

[31]  James B. Abshire,et al.  Mars Observer laser altimeter investigation , 1993, Defense, Security, and Sensing.

[32]  G. Neukum,et al.  Stratigraphy in the Mawrth Vallis region through OMEGA, HRSC color imagery and DTM , 2010 .

[33]  Gottfried Schwarz,et al.  The high-resolution stereo camera (HRSC) experiment on Mars Express: Instrument aspects and experiment conduct from interplanetary cruise through the nominal mission , 2007 .

[34]  L. Marinangeli,et al.  Complex evolution of paleolacustrine systems on Mars: An example from the Holden crater , 2004 .

[35]  Raymond E. Arvidson,et al.  Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO) , 2007 .

[36]  J. Grant,et al.  Selecting landing sites for the 2003 Mars Exploration Rovers , 2004 .

[37]  M. Malin,et al.  The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission , 2004 .

[38]  D J Des Marais,et al.  Exploring for a record of ancient Martian life. , 1999, Journal of geophysical research.

[39]  John F. Mustard,et al.  Clay minerals in delta deposits and organic preservation potential on Mars , 2008 .

[40]  A. McEwen,et al.  Sublacustrine depositional fans in southwest Melas Chasma , 2009 .

[41]  Laboratory Testing of the Ice-Salt Intrusions and Extrusions in Craters for Determining Mars Landing Site , 2008 .

[42]  Jean-Pierre Bibring,et al.  Phyllosilicates in the Mawrth Vallis region of Mars , 2007 .

[43]  Kenneth S Edgett,et al.  Evidence for Persistent Flow and Aqueous Sedimentation on Early Mars , 2003, Science.

[44]  Landing Sites Under Consideration for Mars Science Laboratory , 2010 .

[45]  J. Moore,et al.  Large alluvial fans on Mars , 2005 .

[46]  G. Schwarze,et al.  The high-resolution stereo camera ( HRSC ) experiment on Mars Express : Instrument aspects and experiment conduct from interplanetary cruise through the nominal mission , 2007 .

[47]  Oded Aharonson,et al.  Stratigraphic analysis of the distributary fan in Eberswalde crater using stereo imagery , 2006 .

[48]  Ashwin R. Vasavada,et al.  Landing Sites Proposed for the Mars Science Laboratory Mission , 2007 .

[49]  R. Clark,et al.  Phyllosilicate and sulfate‐hematite deposits within Miyamoto crater in southern Sinus Meridiani, Mars , 2008 .

[50]  N. Bridges,et al.  Selection of the Mars Exploration Rover landing sites , 2003 .

[51]  James W. Head,et al.  Fluvial sedimentary deposits on Mars: Ancient deltas in a crater lake in the Nili Fossae region , 2005 .

[52]  Agustin Chicarro,et al.  Mars express : the scientific payload , 2004 .

[53]  John P. Grotzinger,et al.  Beyond water on Mars , 2009 .

[54]  C. Quantin,et al.  Stratigraphic architectures spotted in southern Melas Chasma, Valles Marineris, Mars , 2007 .

[55]  Preliminary Constraints and Plans for Mars Science Laboratory Landing Site Selection , 2006 .

[56]  R. Arvidson,et al.  Geologic setting and origin of Terra Meridiani hematite deposit on Mars , 2002 .

[57]  D. H. Scott,et al.  GEOLOGIC MAP OF THE WESTERN EQUATORIAL REGION OF MARS , 1986 .

[58]  L. Edwards,et al.  Context Camera Investigation on board the Mars Reconnaissance Orbiter , 2007 .

[59]  Maria T. Zuber,et al.  A minimum time for the formation of Holden Northeast fan, Mars , 2004 .

[60]  J. Grant,et al.  Geomorphic and stratigraphic analysis of Crater Terby and layered deposits north of Hellas basin, Mars , 2007 .

[61]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[62]  M. M. Osterloo,et al.  Chloride-Bearing Materials in the Southern Highlands of Mars , 2008, Science.

[63]  T. Encrenaz,et al.  Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.

[64]  R. Morris,et al.  Mineralogy of Terra Meridiani and western Arabia Terra from OMEGA/MEx and implications for their formation , 2008 .

[65]  J. Michalski,et al.  Evidence for a sedimentary origin of clay minerals in the Mawrth Vallis region, Mars , 2007 .

[66]  J. Bandfield,et al.  Mineralogical characterization of Mars Science Laboratory candidate landing sites from THEMIS and TES data , 2009 .

[67]  F. Poulet,et al.  Analysis of phyllosilicate deposits in the Nili Fossae region of Mars: Comparison of TES and OMEGA data , 2010 .

[68]  Jean-Pierre Bibring,et al.  Phyllosilicate Diversity and Past Aqueous Activity Revealed at Mawrth Vallis, Mars , 2008, Science.

[69]  G. Danielson,et al.  Mars Observer Camera , 1987 .

[70]  M. Malin,et al.  Evidence for recent groundwater seepage and surface runoff on Mars. , 2000, Science.

[71]  John F. Mustard,et al.  Identification of hydrated silicate minerals on Mars using MRO‐CRISM: Geologic context near Nili Fossae and implications for aqueous alteration , 2009 .