Stability via closure relations with applications to dissipative and port-Hamiltonian systems

We consider differential operators $A$ that can be represented by means of a so-called closure relation in terms of a simpler operator $A_{ext}$ defined on a larger space. We analyze how the spectral properties of $A$ and $A_{ext}$ are related and give sufficient conditions for exponential stability of the semigroup generated by $A$ in terms of the semigroup generated by $A_{ext}$. As applications we study the long-term behaviour of a coupled wave-heat system on an interval, parabolic equations on bounded domains that are coupled by matrix valued potentials, and of linear infinite-dimensional port-Hamiltonian systems with dissipation on an interval.

[1]  H. Zwart,et al.  Asymptotic Stability of port-Hamiltonian Systems , 2022, 2210.11775.

[2]  Jochen Gluck,et al.  Convergence to equilibrium for linear parabolic systems coupled by matrix‐valued potentials , 2022, Mathematische Nachrichten.

[3]  B. Jacob,et al.  A port-Hamiltonian formulation of coupled heat transfer , 2022, Mathematical and Computer Modelling of Dynamical Systems.

[4]  Marcus Waurick,et al.  Characterisation for Exponential Stability of port-Hamiltonian Systems , 2022, 2201.10367.

[5]  Birgit Jacob,et al.  Stability of the multidimensional wave equation in port-Hamiltonian modelling , 2021, 2021 60th IEEE Conference on Decision and Control (CDC).

[6]  Albert Y. Zomaya,et al.  Partial Differential Equations , 2007, Explorations in Numerical Analysis.

[7]  Nathanael Skrepek Well-posedness of linear first order port-Hamiltonian Systems on multidimensional spatial domains , 2019, Evolution Equations & Control Theory.

[8]  Birgit Jacob,et al.  On Exact Controllability of Infinite-Dimensional Linear Port-Hamiltonian Systems , 2019, IEEE Control Systems Letters.

[9]  Birgit Jacob,et al.  An operator theoretic approach to infinite‐dimensional control systems , 2018, GAMM-Mitteilungen.

[10]  A. C. Ng Optimal Energy Decay in a One-Dimensional Wave-Heat-Wave System , 2018, Semigroups of Operators – Theory and Applications.

[11]  Jochen Schmid,et al.  Stabilization of port-Hamiltonian systems with discontinuous energy densities , 2018, Evolution Equations & Control Theory.

[12]  Hans Zwart,et al.  Stabilization of port-Hamiltonian systems by nonlinear boundary control in the presence of disturbances , 2018, ESAIM: Control, Optimisation and Calculus of Variations.

[13]  Lassi Paunonen,et al.  Optimal Energy Decay for the Wave-Heat System on a Rectangular Domain , 2018, SIAM J. Math. Anal..

[14]  Bjorn Augner Stabilisation of Infinite-Dimensional Port-Hamiltonian Systems via Dissipative Boundary Feedback , 2018 .

[15]  Hans Zwart,et al.  Stabilization of infinite dimensional port-Hamiltonian systems by nonlinear dynamic boundary control , 2017, Autom..

[16]  Lassi Paunonen,et al.  Robust Regulation of Infinite-Dimensional Port-Hamiltonian Systems , 2017, IEEE Transactions on Automatic Control.

[17]  Hans Zwart,et al.  Building systems from simple hyperbolic ones , 2016, Syst. Control. Lett..

[18]  D. Daners,et al.  Eventually and asymptotically positive semigroups on Banach lattices , 2015, 1511.05294.

[19]  C. Batty,et al.  Optimal energy decay in a one-dimensional coupled wave–heat system , 2015, 1505.04951.

[20]  Hans Zwart,et al.  Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback , 2014, IEEE Transactions on Automatic Control.

[21]  Bjorn Augner,et al.  Stability and Stabilization of Infinite-dimensional Linear Port-Hamiltonian Systems , 2013, 1312.4307.

[22]  Hans Zwart,et al.  Generators with a closure relation , 2013, 1309.4322.

[23]  Hans Zwart,et al.  Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces , 2012 .

[24]  Hans Zwart,et al.  Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain , 2010 .

[25]  Hans Zwart,et al.  Exponential Stability of a Class of Boundary Control Systems , 2009, IEEE Transactions on Automatic Control.

[26]  Bernhard Maschke,et al.  An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes , 2007 .

[27]  J. A. Villegas,et al.  A Port-Hamiltonian Approach to Distributed Parameter Systems , 2007 .

[28]  Hans Zwart,et al.  Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators , 2005, SIAM J. Control. Optim..

[29]  Daniel Daners,et al.  Robin boundary value problems on arbitrary domains , 2000 .

[30]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[31]  P. Guidotti,et al.  Hopf Bifurcation in a Scalar Reaction Diffusion Equation , 1997 .

[32]  R. Nagel,et al.  One-parameter Semigroups of Positive Operators , 1986 .

[33]  D. Matignon,et al.  Dissipative Shallow Water Equations: a port-Hamiltonian formulation , 2021, IFAC-PapersOnLine.

[34]  Timo Reis Some notes on port-Hamiltonian systems on Banach spaces , 2021, IFAC-PapersOnLine.

[35]  Françoise Couenne,et al.  Infinite Dimensional Port Hamiltonian Representation of reaction diffusion processes , 2015 .

[36]  Juan Luis Varona,et al.  Port-Hamiltonian systems: an introductory survey , 2006 .

[37]  W. Arendt Chapter 1 Semigroups and evolution equations: Functional calculus, regularity and kernel estimates , 2002 .

[38]  L. Evans,et al.  Partial Differential Equations , 2000 .

[39]  Tosio Kato Perturbation theory for linear operators , 1966 .