Optical bistability effect in plasmonic racetrack resonator with high extinction ratio.

In this paper, optical bistability effect in an ultracompact plasmonic racetrack resonator with nonlinear optical Kerr medium is investigated both analytically and numerically. The properties of optical bistability and pump threshold are studied at 1.55 µm with various detuning parameters by an analytical model. The transmission switch from the upper branch to the lower branch with a pulse is also demonstrated by a finite-difference time-domain method. An extinction ratio of 97.8% and a switching time of 0.38 ps can be achieved with proper detuning parameter. Such a plasmonic resonator design provides a promising realization for highly effective optical modulators and switch.

[1]  S. Maier,et al.  Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .

[2]  Xueming Liu,et al.  Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. , 2011, Optics express.

[3]  Philippe Regreny,et al.  Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity. , 2010, Nano letters.

[4]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[5]  P. Ho,et al.  Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes. , 2009, Optics express.

[6]  M. Lipson,et al.  All-optical control of light on a silicon chip , 2004, Nature.

[7]  K. Vahala,et al.  High-Q surface-plasmon-polariton whispering-gallery microcavity , 2009, Nature.

[8]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[9]  H. Haus,et al.  Theory of cascaded quarter wave shifted distributed feedback resonators , 1992 .

[10]  H. Miyazaki,et al.  Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. , 2006, Physical review letters.

[11]  Bistable switching in the lossy side-coupled plasmonic waveguide-cavity structures. , 2011, Optics express.

[12]  Stefan A Maier,et al.  Plasmonic field enhancement and SERS in the effective mode volume picture. , 2006, Optics express.

[13]  Stefan A. Maier,et al.  Effective Mode Volume of Nanoscale Plasmon Cavities , 2006 .

[14]  Mark L Brongersma,et al.  Plasmonics: Electrifying plasmonics on silicon. , 2010, Nature materials.

[15]  Bing Wang,et al.  Plasmonic waveguide ring resonator at terahertz frequencies , 2006 .

[16]  Yehia Massoud,et al.  Nanoscale surface plasmon based resonator using rectangular geometry , 2007 .

[17]  M. Xiao,et al.  Electro-optic switch in ferroelectric thin films mediated by surface plasmons , 2006 .

[18]  H. Ming,et al.  Plasmonic racetrack resonator with high extinction ratio under critical coupling condition , 2010 .

[19]  Mark L. Brongersma,et al.  Plasmonics: the next chip-scale technology , 2006 .

[20]  High-contrast modulation of light with light by control of surface plasmon polariton wave coupling , 2004, cond-mat/0405448.

[21]  Laurent Markey,et al.  Dielectric-loaded plasmonic waveguide-ring resonators. , 2009, Optics express.

[22]  Min Qiu,et al.  Resonator channel drop filters in a plasmon-polaritons metal. , 2006, Optics express.

[23]  A. Polman,et al.  Ultrasmall mode volume plasmonic nanodisk resonators. , 2010, Nano letters (Print).