Model Adequacy and the Macroevolution of Angiosperm Functional Traits

Making meaningful inferences from phylogenetic comparative data requires a meaningful model of trait evolution. It is thus important to determine whether the model is appropriate for the data and the question being addressed. One way to assess this is to ask whether the model provides a good statistical explanation for the variation in the data. To date, researchers have focused primarily on the explanatory power of a model relative to alternative models. Methods have been developed to assess the adequacy, or absolute explanatory power, of phylogenetic trait models, but these have been restricted to specific models or questions. Here we present a general statistical framework for assessing the adequacy of phylogenetic trait models. We use our approach to evaluate the statistical performance of commonly used trait models on 337 comparative data sets covering three key angiosperm functional traits. In general, the models we tested often provided poor statistical explanations for the evolution of these traits. This was true for many different groups and at many different scales. Whether such statistical inadequacy will qualitatively alter inferences drawn from comparative data sets will depend on the context. Regardless, assessing model adequacy can provide interesting biological insights—how and why a model fails to describe variation in a data set give us clues about what evolutionary processes may have driven trait evolution across time.

[1]  C. M. Pannell,et al.  Ecological and phytochemical diversity of arillate seeds in Aglaia (Meliaceae): a study of vertebrate dispersal in tropical trees , 1987 .

[2]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[3]  David C. Tank,et al.  Three keys to the radiation of angiosperms into freezing environments , 2013, Nature.

[4]  Jeremy M. Brown,et al.  Detection of implausible phylogenetic inferences using posterior predictive assessment of model fit. , 2014, Systematic biology.

[5]  William A. Walters,et al.  Evolutionary Inferences from Phylogenies: A Review of Methods , 2012 .

[6]  Ramón Díaz-Uriarte,et al.  TESTING HYPOTHESES OF CORRELATED EVOLUTION USING PHYLOGENETICALLY INDEPENDENT CONTRASTS: SENSITIVITY TO DEVIATIONS FROM BROWNIAN MOTION , 1996 .

[7]  M. Pagel Inferring evolutionary processes from phylogenies , 1997 .

[8]  P. Gustafson,et al.  Conservative prior distributions for variance parameters in hierarchical models , 2006 .

[9]  W. Maddison CONFOUNDING ASYMMETRIES IN EVOLUTIONARY DIVERSIFICATION AND CHARACTER CHANGE , 2006, Evolution; international journal of organic evolution.

[10]  A. Grafen The phylogenetic regression. , 1989, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[11]  Jeffery P. Demuth,et al.  Estimating Tempo and Mode of Y Chromosome Turnover: Explaining Y Chromosome Loss With the Fragile Y Hypothesis , 2014, Genetics.

[12]  J. L. Gittleman,et al.  EARLY BURSTS OF BODY SIZE AND SHAPE EVOLUTION ARE RARE IN COMPARATIVE DATA , 2010, Evolution; international journal of organic evolution.

[13]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[14]  D. Rubin Bayesianly Justifiable and Relevant Frequency Calculations for the Applied Statistician , 1984 .

[15]  E. A. Myers,et al.  Evidence for determinism in species diversification and contingency in phenotypic evolution during adaptive radiation , 2012, Proceedings of the Royal Society B: Biological Sciences.

[16]  I. Lovette,et al.  Analysis and visualization of complex macroevolutionary dynamics: an example from Australian scincid lizards. , 2014, Systematic biology.

[17]  D. Rabosky,et al.  Model inadequacy and mistaken inferences of trait-dependent speciation. , 2014, Systematic biology.

[18]  M. Donoghue,et al.  Identifying hidden rate changes in the evolution of a binary morphological character: the evolution of plant habit in campanulid angiosperms. , 2013, Systematic biology.

[19]  Matthew W. Pennell,et al.  Functional distinctiveness of major plant lineages , 2014 .

[20]  Xiao-Li Meng,et al.  POSTERIOR PREDICTIVE ASSESSMENT OF MODEL FITNESS VIA REALIZED DISCREPANCIES , 1996 .

[21]  James E. Byers,et al.  MODEL SELECTION IN PHYLOGENETICS , 2005 .

[22]  B. Redelings,et al.  A NEW PHYLOGENETIC METHOD FOR IDENTIFYING EXCEPTIONAL PHENOTYPIC DIVERSIFICATION , 2012, Evolution; international journal of organic evolution.

[23]  M. Lynch,et al.  The Phylogenetic Mixed Model , 2004, The American Naturalist.

[24]  T. F. Hansen,et al.  Phylogenies and the Comparative Method: A General Approach to Incorporating Phylogenetic Information into the Analysis of Interspecific Data , 1997, The American Naturalist.

[25]  Scott L Nuismer,et al.  Predicting rates of interspecific interaction from phylogenetic trees. , 2015, Ecology letters.

[26]  C. Ané,et al.  A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. , 2014, Systematic biology.

[27]  F J Ayala,et al.  Tempo and mode in evolution. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[28]  R. Piredda,et al.  Application of plastid and nuclear markers to DNA barcoding of Euro-Mediterranean oaks (Quercus, Fagaceae): problems, prospects and phylogenetic implications , 2013 .

[29]  David L. Swofford,et al.  Are Guinea Pigs Rodents? The Importance of Adequate Models in Molecular Phylogenetics , 1997, Journal of Mammalian Evolution.

[30]  L. Harmon,et al.  A novel Bayesian method for inferring and interpreting the dynamics of adaptive landscapes from phylogenetic comparative data , 2014, bioRxiv.

[31]  Michael J. Sanderson,et al.  TESTING FOR DIFFERENT RATES OF CONTINUOUS TRAIT EVOLUTION USING LIKELIHOOD , 2006, Evolution; international journal of organic evolution.

[32]  Thomas F Hansen,et al.  ASSESSING CURRENT ADAPTATION AND PHYLOGENETIC INERTIA AS EXPLANATIONS OF TRAIT EVOLUTION:THE NEED FOR CONTROLLED COMPARISONS , 2005, Evolution; international journal of organic evolution.

[33]  Jack Sullivan,et al.  Does choice in model selection affect maximum likelihood analysis? , 2008, Systematic biology.

[34]  E. Parzen Some recent advances in time series modeling , 1974 .

[35]  Christian P. Robert,et al.  The Bayesian choice : from decision-theoretic foundations to computational implementation , 2007 .

[36]  G. D,et al.  American Naturalist , 1867, Nature.

[37]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[38]  Korbinian Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[39]  K. Winemiller,et al.  TESTING FOR ANCIENT ADAPTIVE RADIATIONS IN NEOTROPICAL CICHLID FISHES , 2013, Evolution; international journal of organic evolution.

[40]  R. Freckleton,et al.  Comparative Methods as a Statistical Fix: The Dangers of Ignoring an Evolutionary Model , 2011, The American Naturalist.

[41]  R. Lande NATURAL SELECTION AND RANDOM GENETIC DRIFT IN PHENOTYPIC EVOLUTION , 1976, Evolution; international journal of organic evolution.

[42]  K. Gardens The Plant List , 2013 .

[43]  D. Mahler,et al.  SURFACE: detecting convergent evolution from comparative data by fitting Ornstein‐Uhlenbeck models with stepwise Akaike Information Criterion , 2013 .

[44]  Albert D. Shieh,et al.  Statistical Applications in Genetics and Molecular Biology , 2010 .

[45]  S. Walker Invited comment on the paper "Slice Sampling" by Radford Neal , 2003 .

[46]  Jack Sullivan,et al.  Assessment of substitution model adequacy using frequentist and Bayesian methods. , 2010, Molecular biology and evolution.

[47]  Matthew W Pennell,et al.  Robust regression and posterior predictive simulation increase power to detect early bursts of trait evolution. , 2014, Systematic biology.

[48]  R. Freckleton,et al.  Comparative analyses of the influence of developmental mode on phenotypic diversification rates in shorebirds , 2006, Proceedings of the Royal Society B: Biological Sciences.

[49]  D. Schluter,et al.  Using Phylogenies to Test Macroevolutionary Hypotheses of Trait Evolution in Cranes (Gruinae) , 1999, The American Naturalist.

[50]  Ming-Hui Chen,et al.  Posterior predictive Bayesian phylogenetic model selection. , 2014, Systematic biology.

[51]  Ignacio Quintero,et al.  Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. , 2013, Ecology letters.

[52]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[53]  R. FitzJohn,et al.  The unsolved challenge to phylogenetic correlation tests for categorical characters. , 2015, Systematic biology.

[54]  T. F. Hansen,et al.  A Comparative Method for Studying Adaptation to a Randomly Evolving Environment , 2008, Evolution; international journal of organic evolution.

[55]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[56]  G. Wagner,et al.  Measurement and Meaning in Biology , 2011, The Quarterly Review of Biology.

[57]  Paul Marjoram,et al.  Statistical Applications in Genetics and Molecular Biology Approximately Sufficient Statistics and Bayesian Computation , 2011 .

[58]  Jeremy M. Brown,et al.  Poor fit to the multispecies coalescent is widely detectable in empirical data. , 2014, Systematic biology.

[59]  A. King,et al.  Phylogenetic Comparative Analysis: A Modeling Approach for Adaptive Evolution , 2004, The American Naturalist.

[60]  Andrew Rambaut,et al.  Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data , 1995, Comput. Appl. Biosci..

[61]  Jonathan P. Bollback,et al.  Bayesian model adequacy and choice in phylogenetics. , 2002, Molecular biology and evolution.

[62]  M. Pagel Inferring the historical patterns of biological evolution , 1999, Nature.

[63]  Leishman,et al.  Data from: Three keys to the radiation of angiosperms into freezing environments , 2013 .

[64]  Martin Hermy,et al.  The LEDA Traitbase: a database of life‐history traits of the Northwest European flora , 2008 .

[65]  Matthew W. Pennell,et al.  An integrative view of phylogenetic comparative methods: connections to population genetics, community ecology, and paleobiology , 2013, Annals of the New York Academy of Sciences.

[66]  R. Freckleton,et al.  Bias and measurement error in comparative analyses: a case study with the Ornstein Uhlenbeck model , 2014, bioRxiv.

[67]  M. Westoby,et al.  ECOLOGICAL STRATEGIES : Some Leading Dimensions of Variation Between Species , 2002 .

[68]  David R. Anderson,et al.  Bayesian Methods in Cosmology: Model selection and multi-model inference , 2009 .

[69]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[70]  Radford M. Neal Slice Sampling , 2003, The Annals of Statistics.

[71]  Anthony R. Ives,et al.  An Introduction to Phylogenetically Based Statistical Methods, with a New Method for Confidence Intervals on Ancestral Values , 1999 .

[72]  J. Losos,et al.  Seeing the Forest for the Trees: The Limitations of Phylogenies in Comparative Biology , 2011, The American Naturalist.

[73]  T. F. Hansen STABILIZING SELECTION AND THE COMPARATIVE ANALYSIS OF ADAPTATION , 1997, Evolution; international journal of organic evolution.

[74]  E. Martins The Comparative Method in Evolutionary Biology, Paul H. Harvey, Mark D. Pagel. Oxford University Press, Oxford (1991), vii, + 239 Price $24.95 paperback , 1992 .

[75]  M. Donoghue,et al.  Biome Shifts and Niche Evolution in Plants , 2014 .

[76]  J. Felsenstein Maximum-likelihood estimation of evolutionary trees from continuous characters. , 1973, American journal of human genetics.

[77]  James G. Lefevre,et al.  Independent contrasts and PGLS regression estimators are equivalent. , 2012, Systematic biology.

[78]  B. O’Meara,et al.  MODELING STABILIZING SELECTION: EXPANDING THE ORNSTEIN–UHLENBECK MODEL OF ADAPTIVE EVOLUTION , 2012, Evolution; international journal of organic evolution.

[79]  M. Lynch The Rate of Morphological Evolution in Mammals from the Standpoint of the Neutral Expectation , 1990, The American Naturalist.

[80]  F J Rohlf,et al.  COMPARATIVE METHODS FOR THE ANALYSIS OF CONTINUOUS VARIABLES: GEOMETRIC INTERPRETATIONS , 2001, Evolution; international journal of organic evolution.

[81]  T. F. Hansen,et al.  TRANSLATING BETWEEN MICROEVOLUTIONARY PROCESS AND MACROEVOLUTIONARY PATTERNS: THE CORRELATION STRUCTURE OF INTERSPECIFIC DATA , 1996, Evolution; international journal of organic evolution.

[82]  Zaid Abdo,et al.  Performance-based selection of likelihood models for phylogeny estimation. , 2003, Systematic biology.

[83]  B. O’Meara Evolutionary Inferences from Phylogenies: A Review of Methods , 2012 .

[84]  M. Westoby,et al.  The Evolutionary ecology of seed size , 2000 .

[85]  R. Gallagher Seeds: the ecology of regeneration in plant communities. , 2014 .

[86]  Luke J. Harmon,et al.  Geiger V2.0: an Expanded Suite of Methods for Fitting Macroevolutionary Models to Phylogenetic Trees , 2014, Bioinform..

[87]  F. James Rohlf,et al.  COMPARATIVE METHODS FOR THE ANALYSIS OF CONTINUOUS VARIABLES: GEOMETRIC INTERPRETATIONS , 2001, Evolution; international journal of organic evolution.

[88]  Matthew W. Pennell,et al.  Is there room for punctuated equilibrium in macroevolution? , 2014, Trends in ecology & evolution.

[89]  T. Garland,et al.  Procedures for the Analysis of Comparative Data Using Phylogenetically Independent Contrasts , 1992 .

[90]  Josef C. Uyeda,et al.  The million-year wait for macroevolutionary bursts , 2011, Proceedings of the National Academy of Sciences.

[91]  Michael J. Landis,et al.  Sensitivity of quantitative traits to mutational effects and number of loci. , 2015, Theoretical population biology.

[92]  Sean C. Thomas,et al.  The worldwide leaf economics spectrum , 2004, Nature.

[93]  G. Hunt Measuring rates of phenotypic evolution and the inseparability of tempo and mode , 2012, Paleobiology.

[94]  Campbell O. Webb,et al.  A Brief History of Seed Size , 2005, Science.

[95]  M. Lynch METHODS FOR THE ANALYSIS OF COMPARATIVE DATA IN EVOLUTIONARY BIOLOGY , 1991, Evolution; international journal of organic evolution.

[96]  G. Slater Correction to ‘Phylogenetic evidence for a shift in the mode of mammalian body size evolution at the Cretaceous–Palaeogene boundary’, and a note on fitting macroevolutionary models to comparative paleontological data sets , 2014 .

[97]  T. Davies,et al.  Neutral Biogeography and the Evolution of Climatic Niches , 2014, The American Naturalist.

[98]  H. Akaike A new look at the statistical model identification , 1974 .

[99]  Ryan Calsbeek,et al.  The Adaptive Landscape in Evolutionary Biology , 2013 .

[100]  Anthony R. Ives,et al.  Using the Past to Predict the Present: Confidence Intervals for Regression Equations in Phylogenetic Comparative Methods , 2000, The American Naturalist.

[101]  Dan Graur,et al.  Is the guinea-pig a rodent? , 1991, Nature.

[102]  C. Gissi,et al.  The guinea-pig is not a rodent , 1996, Nature.

[103]  J. Felsenstein Phylogenies and quantitative characters , 1988 .

[104]  Cosma Rohilla Shalizi,et al.  Philosophy and the practice of Bayesian statistics. , 2010, The British journal of mathematical and statistical psychology.

[105]  J. Weir,et al.  DIVERSITY‐DEPENDENT CLADOGENESIS AND TRAIT EVOLUTION IN THE ADAPTIVE RADIATION OF THE AUKS (AVES: ALCIDAE) , 2013, Evolution; international journal of organic evolution.

[106]  Joseph Felsenstein,et al.  A Comparative Method for Both Discrete and Continuous Characters Using the Threshold Model , 2011, The American Naturalist.

[107]  T. Garland,et al.  TESTING FOR PHYLOGENETIC SIGNAL IN COMPARATIVE DATA: BEHAVIORAL TRAITS ARE MORE LABILE , 2003, Evolution; international journal of organic evolution.

[108]  G. Slater Phylogenetic evidence for a shift in the mode of mammalian body size evolution at the Cretaceous‐Palaeogene boundary , 2013 .

[109]  Theodore Garland,et al.  Phylogenetic Analysis of Covariance by Computer Simulation , 1993 .

[110]  Carl Boettiger,et al.  IS YOUR PHYLOGENY INFORMATIVE? MEASURING THE POWER OF COMPARATIVE METHODS , 2011, Evolution; international journal of organic evolution.

[111]  Ames,et al.  GEOMETRIC INTERPRETATIONS OF COMPARATIVE METHODS FOR THE ANALYSIS OF CONTINUOUS VARIABLES , 2000 .

[112]  Robert P Freckleton,et al.  Detecting Non-Brownian Trait Evolution in Adaptive Radiations , 2006, PLoS biology.

[113]  L. Harmon,et al.  INTEGRATING FOSSILS WITH MOLECULAR PHYLOGENIES IMPROVES INFERENCE OF TRAIT EVOLUTION , 2012, Evolution; international journal of organic evolution.

[114]  R. FitzJohn Diversitree: comparative phylogenetic analyses of diversification in R , 2012 .

[115]  Nick Goldman,et al.  Statistical tests of models of DNA substitution , 1993, Journal of Molecular Evolution.

[116]  M. Foote THE EVOLUTION OF MORPHOLOGICAL DIVERSITY , 1997 .

[117]  Michael J. Landis,et al.  Phylogenetic analysis using Lévy processes: finding jumps in the evolution of continuous traits. , 2013, Systematic biology.

[118]  T. Ingram,et al.  SURFACE : detecting convergent evolution from comparative data by fittingOrnstein-Uhlenbeckmodels with stepwise AIC , 2013 .

[119]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[120]  M. Pagel Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[121]  Michael J. Landis,et al.  Sensitivity of Quantitative Traits to Mutational Effects, Number of Loci, and Population History , 2014, bioRxiv.

[122]  Gavin H. Thomas,et al.  MOTMOT: models of trait macroevolution on trees , 2012 .

[123]  W. G. Hill,et al.  PHENOTYPIC EVOLUTION BY NEUTRAL MUTATION , 1986, Evolution; international journal of organic evolution.

[124]  Charles H. Cannon,et al.  Systematics of Fagaceae: Phylogenetic Tests of Reproductive Trait Evolution , 2001, International Journal of Plant Sciences.

[125]  T. F. Hansen,et al.  Interpreting the evolutionary regression: the interplay between observational and biological errors in phylogenetic comparative studies. , 2012, Systematic biology.

[126]  P. Joyce,et al.  A NOVEL COMPARATIVE METHOD FOR IDENTIFYING SHIFTS IN THE RATE OF CHARACTER EVOLUTION ON TREES , 2011, Evolution; international journal of organic evolution.

[127]  Christopher Rao,et al.  Graphs in Statistical Analysis , 2010 .

[128]  Peter E Midford,et al.  Estimating a binary character's effect on speciation and extinction. , 2007, Systematic biology.

[129]  Richard G FitzJohn,et al.  Quantitative traits and diversification. , 2010, Systematic biology.

[130]  T. Price,et al.  Correlated evolution and independent contrasts. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[131]  J. Hadfield,et al.  General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi‐trait models for continuous and categorical characters , 2010, Journal of evolutionary biology.