Interactions between Digital Geometry and Combinatorics on Words

We review some recent results in digital geometry obtained by using a combinatorics on words approach to discrete geometry. Motivated on the one hand by the well-known theory of Sturmian words which model conveniently discrete lines in the plane, and on the other hand by the development of digital geometry, this study reveals strong links between the two fields. Discrete figures are identified with polyominoes encoded by words. The combinatorial tools lead to elegant descriptions of geometrical features and efficient algorithms. Among these, radix-trees are useful for efficiently detecting path intersection, Lyndon and Christoffel words appear as the main tools for describing digital convexity; equations on words allow to better understand tilings by translations.

[1]  G. C. Shephard,et al.  Tilings and Patterns , 1990 .

[2]  Srecko Brlek,et al.  On the tiling by translation problem , 2009, Discret. Appl. Math..

[3]  Maurice Nivat,et al.  Salient and Reentrant Points of Discrete Sets , 2003, Electron. Notes Discret. Math..

[4]  Azriel Rosenfeld,et al.  Digital straightness - a review , 2004, Discret. Appl. Math..

[5]  Jacques-Olivier Lachaud,et al.  Combinatorial View of Digital Convexity , 2008, DGCI.

[6]  Srecko Brlek,et al.  Christoffel and Fibonacci Tiles , 2009, DGCI.

[7]  Srecko Brlek,et al.  Equations on palindromes and circular words , 2011, Theor. Comput. Sci..

[8]  J. Shallit APPLIED COMBINATORICS ON WORDS (Encyclopedia of Mathematics and its Applications 105) , 2007 .

[9]  Gilbert Labelle,et al.  Properties of the Contour Path of Discrete Sets , 2006, Int. J. Found. Comput. Sci..

[10]  A. Garon,et al.  Palindromes and local periodicity , 2009 .

[11]  Srečko Brlek,et al.  Every polyomino yields at most two square tilings , 2010 .

[12]  M. Lothaire Combinatorics on words: Bibliography , 1997 .

[13]  M. Lothaire,et al.  Algebraic Combinatorics on Words: Index of Notation , 2002 .

[14]  Jean Pierre Duval,et al.  Factorizing Words over an Ordered Alphabet , 1983, J. Algorithms.

[15]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[16]  M. Lothaire,et al.  Applied Combinatorics on Words , 2005 .

[17]  Jan van Leeuwen,et al.  Arbitrary versus Periodic Storage Schemes and Tessellations of the Plane Using One Type of Polyomino , 1984, Inf. Control..

[18]  Srecko Brlek,et al.  A Linear Time and Space Algorithm for Detecting Path Intersection , 2009, DGCI.

[19]  M. Lothaire,et al.  Combinatorics on words: Frontmatter , 1997 .

[20]  Herbert Freeman,et al.  On the Encoding of Arbitrary Geometric Configurations , 1961, IRE Trans. Electron. Comput..

[21]  Jacques-Olivier Lachaud,et al.  Lyndon + Christoffel = digitally convex , 2009, Pattern Recognit..

[22]  Xavier Provençal Minimal non-convex words , 2011, Theor. Comput. Sci..

[23]  Gilbert Labelle,et al.  Algorithms for polyominoes based on the discrete Green theorem , 2005, Discret. Appl. Math..

[24]  J. Allouche Algebraic Combinatorics on Words , 2005 .

[25]  Doris Schattschneider,et al.  Will It Tile? Try the Conway Criterion! , 1980 .

[26]  Srecko Brlek,et al.  An Optimal Algorithm for Detecting Pseudo-squares , 2006, DGCI.

[27]  J. Karhumäki,et al.  ALGEBRAIC COMBINATORICS ON WORDS (Encyclopedia of Mathematics and its Applications 90) By M. LOTHAIRE: 504 pp., 60.00, ISBN 0 521 81220 8 (Cambridge University Press, 2002) , 2003 .

[28]  János Pach,et al.  Research problems in discrete geometry , 2005 .

[29]  Srečko Brlek,et al.  A square tile lls the plane by translation in at most two distinct ways I , 2011 .

[30]  Gilbert Labelle,et al.  A Note on a Result of Daurat and Nivat , 2005, Developments in Language Theory.

[31]  Maxime Crochemore,et al.  Algorithms on strings , 2007 .

[32]  Danièle Beauquier,et al.  On translating one polyomino to tile the plane , 1991, Discret. Comput. Geom..

[33]  Srecko Brlek,et al.  A linear time and space algorithm for detecting path intersection I , 2010 .

[34]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[35]  Srecko Brlek,et al.  On the problem of deciding if a polyomino tiles the plane by translation , 2006, Stringology.