Interactions between Digital Geometry and Combinatorics on Words
暂无分享,去创建一个
[1] G. C. Shephard,et al. Tilings and Patterns , 1990 .
[2] Srecko Brlek,et al. On the tiling by translation problem , 2009, Discret. Appl. Math..
[3] Maurice Nivat,et al. Salient and Reentrant Points of Discrete Sets , 2003, Electron. Notes Discret. Math..
[4] Azriel Rosenfeld,et al. Digital straightness - a review , 2004, Discret. Appl. Math..
[5] Jacques-Olivier Lachaud,et al. Combinatorial View of Digital Convexity , 2008, DGCI.
[6] Srecko Brlek,et al. Christoffel and Fibonacci Tiles , 2009, DGCI.
[7] Srecko Brlek,et al. Equations on palindromes and circular words , 2011, Theor. Comput. Sci..
[8] J. Shallit. APPLIED COMBINATORICS ON WORDS (Encyclopedia of Mathematics and its Applications 105) , 2007 .
[9] Gilbert Labelle,et al. Properties of the Contour Path of Discrete Sets , 2006, Int. J. Found. Comput. Sci..
[10] A. Garon,et al. Palindromes and local periodicity , 2009 .
[11] Srečko Brlek,et al. Every polyomino yields at most two square tilings , 2010 .
[12] M. Lothaire. Combinatorics on words: Bibliography , 1997 .
[13] M. Lothaire,et al. Algebraic Combinatorics on Words: Index of Notation , 2002 .
[14] Jean Pierre Duval,et al. Factorizing Words over an Ordered Alphabet , 1983, J. Algorithms.
[15] David Thomas,et al. The Art in Computer Programming , 2001 .
[16] M. Lothaire,et al. Applied Combinatorics on Words , 2005 .
[17] Jan van Leeuwen,et al. Arbitrary versus Periodic Storage Schemes and Tessellations of the Plane Using One Type of Polyomino , 1984, Inf. Control..
[18] Srecko Brlek,et al. A Linear Time and Space Algorithm for Detecting Path Intersection , 2009, DGCI.
[19] M. Lothaire,et al. Combinatorics on words: Frontmatter , 1997 .
[20] Herbert Freeman,et al. On the Encoding of Arbitrary Geometric Configurations , 1961, IRE Trans. Electron. Comput..
[21] Jacques-Olivier Lachaud,et al. Lyndon + Christoffel = digitally convex , 2009, Pattern Recognit..
[22] Xavier Provençal. Minimal non-convex words , 2011, Theor. Comput. Sci..
[23] Gilbert Labelle,et al. Algorithms for polyominoes based on the discrete Green theorem , 2005, Discret. Appl. Math..
[24] J. Allouche. Algebraic Combinatorics on Words , 2005 .
[25] Doris Schattschneider,et al. Will It Tile? Try the Conway Criterion! , 1980 .
[26] Srecko Brlek,et al. An Optimal Algorithm for Detecting Pseudo-squares , 2006, DGCI.
[27] J. Karhumäki,et al. ALGEBRAIC COMBINATORICS ON WORDS (Encyclopedia of Mathematics and its Applications 90) By M. LOTHAIRE: 504 pp., 60.00, ISBN 0 521 81220 8 (Cambridge University Press, 2002) , 2003 .
[28] János Pach,et al. Research problems in discrete geometry , 2005 .
[29] Srečko Brlek,et al. A square tile lls the plane by translation in at most two distinct ways I , 2011 .
[30] Gilbert Labelle,et al. A Note on a Result of Daurat and Nivat , 2005, Developments in Language Theory.
[31] Maxime Crochemore,et al. Algorithms on strings , 2007 .
[32] Danièle Beauquier,et al. On translating one polyomino to tile the plane , 1991, Discret. Comput. Geom..
[33] Srecko Brlek,et al. A linear time and space algorithm for detecting path intersection I , 2010 .
[34] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[35] Srecko Brlek,et al. On the problem of deciding if a polyomino tiles the plane by translation , 2006, Stringology.