Center conditions for nilpotent cubic systems using the Cherkas method

In this study, we consider the center problem of a cubic polynomial differential system with a nilpotent linear part. The analysis is based on the application of the Cherkas method to the Takens normal form. The analysis requires many computations, which are verified by employing one algebraic manipulator and extensive use of the computer algebra system called Singular.

[1]  H. Zoladek,et al.  The Analytic and Formal Normal Form for the Nilpotent Singularity , 2002 .

[2]  R. Moussu,et al.  Symétrie et forme normale des centres et foyers dégénérés , 1982, Ergodic Theory and Dynamical Systems.

[3]  A. Andronov,et al.  Qualitative Theory of Second-order Dynamic Systems , 1973 .

[4]  Jaume Giné,et al.  Integrability Conditions for Lotka-Volterra Planar Complex Quartic Systems Having Homogeneous Nonlinearities , 2013 .

[5]  M. J. Álvarez,et al.  Generating limit cycles from a nilpotent critical point via normal forms , 2006 .

[6]  Jaume Giné,et al.  Analytic integrability of a class of nilpotent cubic systems , 2002, Math. Comput. Simul..

[7]  Jaume Giné,et al.  Weierstrass integrability in Liénard differential systems , 2011 .

[8]  J. Giné Analytic integrability and characterization of centers for nilpotent singular points , 2004 .

[9]  A. Andreev,et al.  The Center-Focus Problem for a System with Homogeneous Nonlinearities in the Case of Zero Eigenvalues of the Linear Part , 2003 .

[10]  Hans Schönemann,et al.  SINGULAR: a computer algebra system for polynomial computations , 2001, ACCA.

[11]  Yirong Liu,et al.  New Study on the Center Problem and bifurcations of Limit Cycles for the Lyapunov System (II) , 2009, Int. J. Bifurc. Chaos.

[12]  J. Llibre,et al.  Analytic nilpotent centers as limits of nondegenerate centers revisited , 2016 .

[13]  Haibo Chen,et al.  Calculation of singular point quantities at infinity for a type of polynomial differential systems , 2015, Math. Comput. Simul..

[14]  Floris Takens,et al.  Singularities of vector fields , 1974 .

[15]  Valery G. Romanovski,et al.  An approach to solving systems of polynomials via modular arithmetics with applications , 2011, J. Comput. Appl. Math..

[16]  Jaume Llibre,et al.  Limit cycles bifurcating from a degenerate center , 2016, Math. Comput. Simul..

[17]  J. Giné,et al.  Analytic nilpotent centers with analytic first integral , 2010 .

[18]  A. Gasull,et al.  Center Problem for Several Differential Equations via Cherkas' Method☆ , 1998 .

[19]  Colin Christopher,et al.  An Algebraic Approach to the Classification of Centers in Polynomial Liénard Systems , 1999 .

[20]  Jaume Giné,et al.  Local analytic integrability for nilpotent centers , 2003, Ergodic Theory and Dynamical Systems.

[21]  Isaac A. García,et al.  Formal Inverse Integrating Factor and the Nilpotent Center Problem , 2016, Int. J. Bifurc. Chaos.

[22]  A. Algaba,et al.  The center problem for a family of systems of differential equations having a nilpotent singular point , 2008 .

[23]  L. Hongwei,et al.  Original article: Center conditions and bifurcation of limit cycles at three-order nilpotent critical point in a septic Lyapunov system , 2011 .

[24]  Valery G. Romanovski,et al.  The Center and Cyclicity Problems: A Computational Algebra Approach , 2009 .

[25]  James H. Davenport,et al.  P-adic reconstruction of rational numbers , 1982, SIGS.

[26]  J. Llibre,et al.  A method for characterizing nilpotent centers , 2014 .

[27]  Jaume Llibre,et al.  The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems , 2005, math/0506116.

[28]  Jaume Giné Analytic Integrability of Nilpotent cubic Systems with degenerate infinity , 2001, Int. J. Bifurc. Chaos.

[29]  Jaume Giné,et al.  The reversibility and the center problem , 2011 .

[30]  I. A. García Cyclicity of some symmetric nilpotent centers , 2016 .