Ionic liquid electrolytes based on multi-methoxyethyl substituted ammoniums and perfluorinated sulfonimides: Preparation, characterization, and properties

[1]  H. Gores,et al.  Fractional Walden Rule for Ionic Liquids: Examples from Recent Measurements and a Critique of the So-Called Ideal KCl Line for the Walden Plot † , 2010 .

[2]  M. Armand,et al.  Efficient Preparation of (Fluorosulfonyl)(pentafluoroethanesulfonyl)imide and Its Alkali Salts , 2010 .

[3]  W. Henderson,et al.  Phase Behavior and Thermal Properties of Ternary Ionic Liquid−Lithium Salt (IL−IL−LiX) Electrolytes , 2010 .

[4]  Stefania Ferrari,et al.  Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid , 2010 .

[5]  W. Henderson,et al.  Electrochemical and Physicochemical Properties of PY[sub 14]FSI-Based Electrolytes with LiFSI , 2009, Journal of The Electrochemical Society.

[6]  E. Quartarone,et al.  A binary ionic liquid system composed of N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide and lithium bis(trifluoromethanesulfonyl)imide: A new promising electrolyte for lithium batteries , 2009 .

[7]  B. Scrosati,et al.  Compatibility of the Py24TFSI–LiTFSI ionic liquid solution with Li4Ti5O12 and LiFePO4 lithium ion battery electrodes , 2009 .

[8]  Bruno Scrosati,et al.  Ionic-liquid materials for the electrochemical challenges of the future. , 2009, Nature materials.

[9]  Stefano Passerini,et al.  Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes. I. Electrochemical characterization of the electrolytes , 2009 .

[10]  M. Winter,et al.  Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes: II. Evaluation of specific capacity and cycling efficiency and stability at room temperature , 2009 .

[11]  Zhen Zhou,et al.  Li/LiFePO4 batteries with room temperature ionic liquid as electrolyte , 2009 .

[12]  B. Scrosati,et al.  Lithium-Ion-Conducting Electrolytes: From an Ionic Liquid to the Polymer Membrane. , 2009, Journal of the Electrochemical Society.

[13]  Shaohua Fang,et al.  Ionic liquids based on functionalized guanidinium cations and TFSI anion as potential electrolytes , 2009 .

[14]  Maria Forsyth,et al.  On the concept of ionicity in ionic liquids. , 2009, Physical chemistry chemical physics : PCCP.

[15]  K. Tsunashima,et al.  Lithium Secondary Batteries Using a Lithium Nickelate-Based Cathode and Phosphonium Ionic Liquid Electrolytes , 2009 .

[16]  M. Ribeiro,et al.  Alkoxy chain effect on the viscosity of a quaternary ammonium ionic liquid: molecular dynamics simulations. , 2009, The journal of physical chemistry. B.

[17]  M. Ishikawa,et al.  A neat ionic liquid electrolyte based on FSI anion for electric double layer capacitor , 2008 .

[18]  K. Kubota,et al.  Novel inorganic ionic liquids possessing low melting temperatures and wide electrochemical windows: Binary mixtures of alkali bis(fluorosulfonyl)amides , 2008 .

[19]  K. Zaghib,et al.  Compatibility of N-Methyl-N-propylpyrrolidinium Cation Room-Temperature Ionic Liquid Electrolytes and Graphite Electrodes , 2008 .

[20]  S. Seki,et al.  Solvation of Lithium Ion in N,N-Diethyl-N-methyl-N-(2-methoxyethyl)ammonium Bis(trifluoromethanesulfonyl)-amide Using Raman and Multinuclear NMR Spectroscopy , 2008, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[21]  M. Ishikawa,et al.  Ionic liquid electrolytes compatible with graphitized carbon negative without additive and their effects on interfacial properties , 2008 .

[22]  Peng Wang,et al.  High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts. , 2008, Nature materials.

[23]  Kikuko Hayamizu,et al.  Quaternary Ammonium Room-Temperature Ionic Liquid/Lithium Salt Binary Electrolytes: Electrochemical Study , 2008 .

[24]  K. Zaghib,et al.  LiFePO4 and graphite electrodes with ionic liquids based on bis(fluorosulfonyl)imide (FSI)-for Li-ion batteries , 2008 .

[25]  H. Sakaebe,et al.  Application of room temperature ionic liquids to Li batteries , 2007 .

[26]  Hajime Matsumoto,et al.  Application of nonflammable electrolyte with room temperature ionic liquids (RTILs) for lithium-ion cells , 2007 .

[27]  Bruno Scrosati,et al.  LiTFSI-BEPyTFSI as an improved ionic liquid electrolyte for rechargeable lithium batteries , 2007 .

[28]  M. Ribeiro,et al.  Molecular dynamics simulation of the ionic liquid N-ethyl-N,N-dimethyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide. , 2007, The journal of physical chemistry. B.

[29]  K. Tsunashima,et al.  Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes , 2007 .

[30]  R. Scopelliti,et al.  Revisiting ether-derivatized imidazolium-based ionic liquids. , 2007, The journal of physical chemistry. B.

[31]  Yo Kobayashi,et al.  Comparative Study of Lithium Secondary Batteries Using Nonvolatile Safety Electrolytes , 2007 .

[32]  Karim Zaghib,et al.  Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials , 2007 .

[33]  E. Castner,et al.  Fluorescence probing of temperature-dependent dynamics and friction in ionic liquid local environments. , 2007, The journal of physical chemistry. B.

[34]  M. Ishikawa,et al.  Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries , 2006 .

[35]  H. Sakaebe,et al.  Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis(fluorosulfonyl)imide [FSI]− , 2006 .

[36]  M. Beran,et al.  A new route to the syntheses of alkali metal bis(fluorosulfuryl)imides: Crystal structure of LiN(SO2F)2 , 2006 .

[37]  D. Macfarlane,et al.  Characterization of the Lithium Surface in N-Methyl-N-alkylpyrrolidinium Bis(trifluoromethanesulfonyl)amide Room-Temperature Ionic Liquid Electrolytes , 2006 .

[38]  H. Matsumoto,et al.  Cyclic quaternary ammonium ionic liquids with perfluoroalkyltrifluoroborates: synthesis, characterization, and properties. , 2006, Chemistry.

[39]  Kai Jiang,et al.  Electrochemical intercalation of lithium into a natural graphite anode in quaternary ammonium-based ionic liquid electrolytes , 2006 .

[40]  Akira Usami,et al.  Reversibility of Lithium Secondary Batteries Using a Room-Temperature Ionic Liquid Mixture and Lithium Metal , 2005 .

[41]  H. Sakaebe,et al.  Discharge–charge properties of Li/LiCoO2 cell using room temperature ionic liquids (RTILs) based on quaternary ammonium cation – Effect of the structure , 2005 .

[42]  Michel Perrier,et al.  LiFePO4 safe Li-ion polymer batteries for clean environment , 2005 .

[43]  Petr Novák,et al.  Stabilisation of lithiated graphite in an electrolyte based on ionic liquids: an electrochemical and scanning electron microscopy study , 2005 .

[44]  Ki Chul Park,et al.  High Energy-Density Capacitor Based on Ammonium Salt Type Ionic Liquids and Their Mixing Effect by Propylene Carbonate , 2005 .

[45]  H. Matsumoto,et al.  Low-melting, low-viscous, hydrophobic ionic liquids: aliphatic quaternary ammonium salts with perfluoroalkyltrifluoroborates. , 2005, Chemistry.

[46]  K. Takagi,et al.  Ionic liquids containing carbonate solvent as electrolytes for lithium ion cells , 2004 .

[47]  Po-Yu Chen,et al.  Electrodeposition of cesium at mercury electrodes in the tri-1-butylmethylammonium bis((trifluoromethyl)sulfonyl)imide room-temperature ionic liquid , 2004 .

[48]  Michel Armand,et al.  Room temperature molten salts as lithium battery electrolyte , 2004 .

[49]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[50]  K. Takagi,et al.  Electrochemical properties of novel ionic liquids for electric double layer capacitor applications , 2004 .

[51]  J. Pernak,et al.  Ionic liquids with symmetrical dialkoxymethyl-substituted imidazolium cations. , 2004, Chemistry.

[52]  Michel Perrier,et al.  Safe Li-ion polymer batteries for HEV applications , 2004 .

[53]  Anthony F. Hollenkamp,et al.  High Lithium Metal Cycling Efficiency in a Room-Temperature Ionic Liquid , 2004 .

[54]  Hajime Matsumoto,et al.  N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13–TFSI) – novel electrolyte base for Li battery , 2003 .

[55]  Y. Aihara,et al.  Liquid and Polymer Gel Electrolytes for Lithium Batteries Composed of Room-Temperature Molten Salt Doped by Lithium Salt , 2003 .

[56]  Wu Xu,et al.  Ionic liquids: Ion mobilities, glass temperatures, and fragilities , 2003 .

[57]  Makoto Ue,et al.  Application of Low-Viscosity Ionic Liquid to the Electrolyte of Double-Layer Capacitors , 2003 .

[58]  MatsumotoHajime,et al.  Room Temperature Molten Salts Based on Tetraalkylammonium Cations and Bis(trifluoromethylsulfonyl)imide , 2002 .

[59]  M. Ue,et al.  Ionic Liquids with Low Melting Points and Their Application to Double-Layer Capacitor Electrolytes , 2002 .

[60]  H. Matsumoto,et al.  Highly Conductive Room Temperature Molten Salts Based on Small Trimethylalkylammonium Cations and Bis(trifluoromethylsulfonyl)imide , 2000 .

[61]  R. Jacobson,et al.  Synthesis of alkali and alkaline earth metal complexes of open cryptands and their X-ray structures wherein M=Li+, Na+ and Ba2+ , 1999 .

[62]  A. Vij,et al.  Synthesis of Poly- and the First Perfluoroalkyl-N(SO2F)2 Derivatives: Improved Methods for the Preparation of XN(SO2F)2 (X = H, Cl) and Single-Crystal Diffraction Studies of HN(SO2Cl)2, HN(SO2F)2, and CF3CH2N(SO2F)2† , 1998 .

[63]  K. Abraham,et al.  Highly Conductive PEO-like Polymer Electrolytes , 1997 .

[64]  H. Pettersson,et al.  The Performance and Stability of Ambient Temperature Molten Salts for Solar Cell Applications , 1996 .

[65]  M. Grätzel,et al.  Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts. , 1996, Inorganic chemistry.

[66]  P. Bruce,et al.  Electrochemical measurement of transference numbers in polymer electrolytes , 1987 .

[67]  C. Angell,et al.  Versatile organic iodide melts and glasses with high mole fractions of LiI: Glass transition temperatures and electrical conductivities , 1983 .

[68]  J. K. Ruff The Imidodisulfuryl Fluoride Ion , 1965 .

[69]  A. Hollenkamp,et al.  Application of the N-propyl-N-methyl-pyrrolidinium Bis(fluorosulfonyl)imide RTIL Containing Lithium Bis(fluorosulfonyl)imide in Ionic Liquid Based Lithium Batteries , 2010 .

[70]  M. Armand,et al.  Ionic liquids and plastic crystals based on tertiary sulfonium and bis(fluorosulfonyl)imide , 2010 .

[71]  大野 弘幸,et al.  Electrochemical aspects of ionic liquids , 2005 .

[72]  Tetsuya Tsuda,et al.  The Application of Room Temperature Molten Salt with Low Viscosity to the Electrolyte for Dye-Sensitized Solar Cell , 2001 .

[73]  C. Angell,et al.  Ambient temperature plastic crystal fast ion conductors (PLICFICS) , 1986 .