Simulating molecular docking with haptics

Intermolecular binding underlies various metabolic and regulatory processes of the cell, and the therapeutic and pharmacological properties of drugs. Molecular docking systems model and simulate these interactions in silico and allow the study of the binding process. In molecular docking, haptics enables the user to sense the interaction forces and intervene cognitively in the docking process. Haptics-assisted docking systems provide an immersive virtual docking environment where the user can interact with the molecules, feel the interaction forces using their sense of touch, identify visually the binding site, and guide the molecules to their binding pose. Despite a forty-year research e�ort however, the docking community has been slow to adopt this technology. Proprietary, unreleased software, expensive haptic hardware and limits on processing power are the main reasons for this. Another signi�cant factor is the size of the molecules simulated, limited to small molecules. The focus of the research described in this thesis is the development of an interactive haptics-assisted docking application that addresses the above issues, and enables the rigid docking of very large biomolecules and the study of the underlying interactions. Novel methods for computing the interaction forces of binding on the CPU and GPU, in real-time, have been developed. The force calculation methods proposed here overcome several computational limitations of previous approaches, such as precomputed force grids, and could potentially be used to model molecular exibility at haptic refresh rates. Methods for force scaling, multipoint collision response, and haptic navigation are also reported that address newfound issues, particular to the interactive docking of large systems, e.g. force stability at molecular collision. The i ii result is a haptics-assisted docking application, Haptimol RD, that runs on relatively inexpensive consumer level hardware, (i.e. there is no need for specialized/proprietary hardware).

[1]  B. Lee,et al.  The interpretation of protein structures: estimation of static accessibility. , 1971, Journal of molecular biology.

[2]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[3]  A. Kidera,et al.  Protein structural change upon ligand binding: linear response theory. , 2005, Physical review letters.

[4]  Susana K. Lai-Yuen,et al.  Computer-aided molecular design (CAMD) with force-torque feedback , 2005, Ninth International Conference on Computer Aided Design and Computer Graphics (CAD-CG'05).

[5]  Frederick P. Brooks,et al.  Project GROPEHaptic displays for scientific visualization , 1990, SIGGRAPH.

[6]  Matthew B. Stocks,et al.  Interacting with the biomolecular solvent accessible surface via a haptic feedback device , 2009, BMC Structural Biology.

[7]  William L. Jorgensen,et al.  OPLS all‐atom force field for carbohydrates , 1997 .

[8]  F. Brooks,et al.  Force display in molecular docking , 1990 .

[9]  William L. Jorgensen,et al.  OPLS ALL-ATOM MODEL FOR AMINES : RESOLUTION OF THE AMINE HYDRATION PROBLEM , 1999 .

[10]  Lydia E. Kavraki,et al.  Molecular docking: a problem with thousands of degrees of freedom , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[11]  T. Pollard,et al.  Annual review of biophysics and biomolecular structure , 1992 .

[12]  Georgios Iakovou,et al.  Determination of locked interfaces in biomolecular complexes using Haptimol_RD , 2016, Biophysics and physicobiology.

[13]  Yong-Gu Lee,et al.  Smoothing haptic interaction using molecular force calculations , 2004, Comput. Aided Des..

[14]  Yuan-Shin Lee,et al.  Interactive Computer-Aided Design for Molecular Docking and Assembly , 2006 .

[15]  Michel F. Sanner,et al.  Role of haptics in teaching structural molecular biology , 2003, 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2003. HAPTICS 2003. Proceedings..

[16]  Brian K Shoichet,et al.  Prediction of protein-ligand interactions. Docking and scoring: successes and gaps. , 2006, Journal of medicinal chemistry.

[17]  A-E Molza,et al.  Innovative interactive flexible docking method for multi-scale reconstruction elucidates dystrophin molecular assembly. , 2014, Faraday discussions.

[18]  William Gobson,et al.  Multimedia: From Wagner to Virtual Reality , 2001 .

[19]  Jernej Barbic,et al.  Squashing cubes: automating deformable model construction for graphics , 2004, SIGGRAPH '04.

[20]  BarbičJernej,et al.  Six-DoF Haptic Rendering of Contact Between Geometrically Complex Reduced Deformable Models , 2008 .

[21]  Christian Duriez,et al.  Realistic haptic rendering of interacting deformable objects in virtual environments , 2008, IEEE Transactions on Visualization and Computer Graphics.

[22]  R M Knegtel,et al.  MONTY: a Monte Carlo approach to protein-DNA recognition. , 1994, Journal of molecular biology.

[23]  Aude Bolopion,et al.  Variable gain haptic coupling for molecular simulation , 2011, 2011 IEEE World Haptics Conference.

[24]  Maria A Miteva,et al.  Structure-based virtual ligand screening: recent success stories. , 2009, Combinatorial chemistry & high throughput screening.

[25]  David E. Clark,et al.  A comparison of heuristic search algorithms for molecular docking , 1997, J. Comput. Aided Mol. Des..

[26]  M. Sternberg,et al.  Prediction of protein-protein interactions by docking methods. , 2002, Current opinion in structural biology.

[27]  Peter Gund,et al.  Computer-Generated Space-Filling Molecular Models , 1978, Journal of chemical information and computer sciences.

[28]  Brian K. Shoichet,et al.  Molecular docking using shape descriptors , 1992 .

[29]  Amitabh Varshney,et al.  Real-Time Visualization of Large Time-Varying Molecules , 2004 .

[30]  Ioannis Ch. Paschalidis,et al.  SDU: A Semidefinite Programming-Based Underestimation Method for Stochastic Global Optimization in Protein Docking , 2007, IEEE Transactions on Automatic Control.

[31]  Yuan-Shin Lee,et al.  Energy-Field Optimization and Haptic-Based Molecular Docking and Assembly Search System for Computer-Aided Molecular Design (CAMD) , 2006, 2006 14th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems.

[32]  Paul J. Hergenrother,et al.  Structure-Based Design and In Silico Virtual Screening of Combinatorial Libraries. A Combined Chemical- Computational Project , 2005 .

[33]  Klaus Schulten,et al.  A system for interactive molecular dynamics simulation , 2001, I3D '01.

[34]  Thomas E. Ferrin,et al.  Computer graphics in real‐time docking with energy calculation and minimization , 1985 .

[35]  Cagatay Basdogan,et al.  Haptic Rendering in Virtual Environments , 2002 .

[36]  Nicola Zonta,et al.  Accessible haptic technology for drug design applications , 2009, Journal of molecular modeling.

[37]  Maik Boltes,et al.  Adaptive Visuo-Haptic Rendering for Hybrid Modeling of Macromolecular Assemblies , 2004 .

[38]  Ming C. Lin,et al.  Sensation preserving simplification for haptic rendering , 2003, SIGGRAPH Courses.

[39]  Georgios Iakovou,et al.  Adaptive GPU-accelerated force calculation for interactive rigid molecular docking using haptics. , 2015, Journal of molecular graphics & modelling.

[40]  J. Bajorath,et al.  Docking and scoring in virtual screening for drug discovery: methods and applications , 2004, Nature Reviews Drug Discovery.

[41]  John Kenneth Salisbury,et al.  Haptic Rendering: Introductory Concepts , 2004, IEEE Computer Graphics and Applications.

[42]  Zoppè,et al.  Computing power revolution and new algorithms: GP-GPUs, clouds and more: general discussion. , 2014, Faraday discussions.

[43]  Stéphane Régnier,et al.  Stable six degrees of freedom haptic feedback for flexible ligand-protein docking , 2009, Comput. Aided Des..

[44]  Thomas S. Huang,et al.  A survey of construction and manipulation of octrees , 1988, Comput. Vis. Graph. Image Process..

[45]  Stephane Regnier,et al.  The wave variables, a solution for stable haptic feedback in molecular docking simulations , 2007 .

[46]  Arnold Neumaier,et al.  Molecular Modeling of Proteins and Mathematical Prediction of Protein Structure , 1997, SIAM Rev..

[47]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[48]  Georgios Iakovou,et al.  A real-time proximity querying algorithm for haptic-based molecular docking. , 2014, Faraday discussions.

[49]  Stefan Birmanns,et al.  Interactive fitting augmented by force-feedback and virtual reality. , 2003, Journal of structural biology.

[50]  Hiroshi Tanaka,et al.  Concept and prototype of protein-ligand docking simulator with force feedback technology , 2002, Bioinform..

[51]  Dinesh Manocha,et al.  gProximity: Hierarchical GPU‐based Operations for Collision and Distance Queries , 2010, Comput. Graph. Forum.

[52]  James J. Troy,et al.  Six degree-of-freedom haptic rendering using voxel sampling , 1999, SIGGRAPH.

[53]  R Abagyan,et al.  High-throughput docking for lead generation. , 2001, Current opinion in chemical biology.

[54]  Olga Sourina,et al.  Six Degree-of-Freedom Haptic Rendering for Biomolecular Docking , 2011, Trans. Comput. Sci..

[55]  Robert Easdon,et al.  Ambient occlusion and shadows for molecular graphics , 2013 .

[56]  Matthias Rarey,et al.  Fast force field‐based optimization of protein–ligand complexes with graphics processor , 2012, J. Comput. Chem..

[57]  A. Anderson The process of structure-based drug design. , 2003, Chemistry & biology.

[58]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[59]  Jernej Barbic,et al.  Six-DoF Haptic Rendering of Contact Between Geometrically Complex Reduced Deformable Models , 2008, IEEE Transactions on Haptics.

[60]  Andrea Brancale,et al.  Haptic-driven, interactive drug design: implementing a GPU-based approach to evaluate the induced fit effect. , 2014, Faraday discussions.

[61]  Nigel W. John,et al.  Visualization of molecular quantum dynamics: a molecular visualization tool with integrated Web3D and haptics , 2005, Web3D '05.

[62]  Andrea Brancale,et al.  Haptic-driven applications to molecular modeling: state-of-the-art and perspectives. , 2012, Future medicinal chemistry.

[63]  Elizabeth Yuriev,et al.  Challenges and advances in computational docking: 2009 in review , 2011, Journal of molecular recognition : JMR.

[64]  Eric Martz,et al.  Protein Explorer: easy yet powerful macromolecular visualization. , 2002, Trends in biochemical sciences.

[65]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[66]  Jing Wang,et al.  Visual Haptic-Based Biomolecular Docking and Its Applications in E-Learning , 2009, Trans. Edutainment.

[67]  Kirill Garanzha,et al.  Grid-based SAH BVH construction on a GPU , 2011, The Visual Computer.

[68]  Jenn-Huei Lii,et al.  The MM3 force field for amides, polypeptides and proteins , 1991 .

[69]  G. Oliva,et al.  Virtual screening and its integration with modern drug design technologies. , 2008, Current medicinal chemistry.

[70]  Paul Labute,et al.  Variability in docking success rates due to dataset preparation , 2012, Journal of Computer-Aided Molecular Design.

[71]  Lena A. E. Tibell,et al.  Do haptic representations help complex molecular learning , 2011 .

[72]  Natasja Brooijmans,et al.  Molecular recognition and docking algorithms. , 2003, Annual review of biophysics and biomolecular structure.

[73]  Mehdi Ammi,et al.  Multisensory VR interaction for protein-docking in the CoRSAIRe project , 2009, Virtual Reality.

[74]  Allison M. Okamura,et al.  Virtual Environment for Exploring Atomic Bonding , 2004 .

[75]  Martin C. Herbordt,et al.  GPU acceleration of a production molecular docking code , 2009, GPGPU-2.

[76]  Klaus Schulten,et al.  GPU-accelerated molecular modeling coming of age. , 2010, Journal of molecular graphics & modelling.

[77]  Ian J. Grimstead,et al.  GPU‐accelerated molecular mechanics computations , 2013, J. Comput. Chem..

[78]  David S. Goodsell,et al.  AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility , 2009, J. Comput. Chem..

[79]  Jenn-Huei Lii,et al.  An improved force field (MM4) for saturated hydrocarbons , 1996, Journal of Computational Chemistry.

[80]  Florence Tama,et al.  Topology representing neural networks reconcile biomolecular shape, structure, and dynamics , 2004, Neurocomputing.

[81]  Christopher R. Corbeil,et al.  Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go , 2008, British journal of pharmacology.

[82]  Gabriel Zachmann,et al.  Massively-Parallel Proximity Queries for Point Clouds , 2014, VRIPHYS.

[83]  Alexandru Dancu,et al.  The Ultimate Display , 2014 .

[84]  Olga Sourina,et al.  Haptic Rendering Algorithm for Biomolecular Docking with Torque Force , 2010, 2010 International Conference on Cyberworlds.

[85]  U. Singh,et al.  A NEW FORCE FIELD FOR MOLECULAR MECHANICAL SIMULATION OF NUCLEIC ACIDS AND PROTEINS , 1984 .

[86]  Tero Karras,et al.  Maximizing parallelism in the construction of BVHs, octrees, and k-d trees , 2012, EGGH-HPG'12.

[87]  Dinesh Manocha,et al.  Six degree-of-freedom haptic display of polygonal models , 2000, IEEE Visualization.

[88]  Alain Micaelli,et al.  Energy-field reconstruction for haptic-based molecular docking using energy minimization processes , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[89]  Ruth Nussinov,et al.  PatchDock and SymmDock: servers for rigid and symmetric docking , 2005, Nucleic Acids Res..

[90]  Petter Bivall,et al.  Touching the Essence of Life : Haptic Virtual Proteins for Learning , 2010 .

[91]  Petros Daras,et al.  A Shape Descriptor for Fast Complementarity Matching in Molecular Docking , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[92]  Kenneth M Merz,et al.  Haptic applications for molecular structure manipulation. , 2007, Journal of molecular graphics & modelling.

[93]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[94]  Stephen D. Laycock,et al.  Applying forces to elastic network models of large biomolecules using a haptic feedback device , 2011, J. Comput. Aided Mol. Des..

[95]  Thomas Lengauer,et al.  Computational methods for biomolecular docking. , 1996, Current opinion in structural biology.

[96]  David S. Ebert,et al.  Multi-modal perceptualization of volumetric data and its application to molecular docking , 2005, First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics Conference.

[97]  Thierry Langer,et al.  Recent Advances in Docking and Scoring , 2005 .

[98]  Andreas P. Eichenberger,et al.  Definition and testing of the GROMOS force-field versions 54A7 and 54B7 , 2011, European Biophysics Journal.

[99]  A. Bondi van der Waals Volumes and Radii , 1964 .

[100]  D. Schomburg,et al.  Hydrogen bonding and molecular surface shape complementarity as a basis for protein docking. , 1996, Journal of molecular biology.

[101]  Miriam Eisenstein,et al.  On proteins, grids, correlations, and docking. , 2004, Comptes rendus biologies.

[102]  Erk Subasi,et al.  A New Haptic Interaction and Visualization Approach for Rigid Molecular Docking in Virtual Environments , 2008, PRESENCE: Teleoperators and Virtual Environments.

[103]  Les A. Piegl,et al.  Delaunay triangulation using a uniform grid , 1993, IEEE Computer Graphics and Applications.

[104]  Marc Baaden,et al.  A VR framework for interacting with molecular simulations , 2008, VRST '08.

[105]  Ming C. Lin,et al.  Introduction to haptic rendering , 2005, SIGGRAPH Courses.

[106]  Ming C. Lin,et al.  6-dof haptic rendering using contact levels of detail and haptic textures , 2004 .

[107]  M. L. Connolly Analytical molecular surface calculation , 1983 .

[108]  Klaus Schulten,et al.  Accelerating Molecular Modeling Applications with GPU Computing , 2009 .

[109]  R A Sayle,et al.  RASMOL: biomolecular graphics for all. , 1995, Trends in biochemical sciences.

[110]  Alain Micaelli,et al.  6 DOF haptic feedback for molecular docking using wave variables , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[111]  K. Ramnarayan,et al.  Recent developments in computational proteomics. , 2001, Drug discovery today.

[112]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[113]  Aleš Křenek Haptic Rendering of Molecular Conformations , 2001 .

[114]  A. W. Schüttelkopf,et al.  PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. , 2004, Acta crystallographica. Section D, Biological crystallography.

[115]  Thomas A. Halgren,et al.  Merck molecular force field. IV. conformational energies and geometries for MMFF94 , 1996, J. Comput. Chem..

[116]  M. L. Connolly Solvent-accessible surfaces of proteins and nucleic acids. , 1983, Science.

[117]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[118]  Anders Ynnerman,et al.  Designing and Evaluating a Haptic System for Biomolecular Education , 2007, 2007 IEEE Virtual Reality Conference.

[119]  Nancy M. Amato,et al.  Ligand binding with OBPRM and user input , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[120]  R. Nussinov,et al.  Induced Fit, Conformational Selection and Independent Dynamic Segments: an Extended View of Binding Events Opinion , 2022 .

[121]  T. Weikl,et al.  Selected‐fit versus induced‐fit protein binding: Kinetic differences and mutational analysis , 2008, Proteins.

[122]  Conrad C. Huang,et al.  The MIDAS display system , 1988 .