Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics.

We demonstrate the integration of a black phosphorus photodetector in a hybrid, three-dimensional architecture of silicon photonics and metallic nanoplasmonics structures. This integration approach combines the advantages of the low propagation loss of silicon waveguides, high-field confinement of a plasmonic nanogap, and the narrow bandgap of black phosphorus to achieve high responsivity for detection of telecom-band, near-infrared light. Benefiting from an ultrashort channel (∼60 nm) and near-field enhancement enabled by the nanogap structure, the photodetector shows an intrinsic responsivity as high as 10 A/W afforded by internal gain mechanisms, and a 3 dB roll-off frequency of 150 MHz. This device demonstrates a promising approach for on-chip integration of three distinctive photonic systems, which, as a generic platform, may lead to future nanophotonic applications for biosensing, nonlinear optics, and optical signal processing.

[1]  Michal Lipson,et al.  Graphene electro-optic modulator with 30 GHz bandwidth , 2015, Nature Photonics.

[2]  Ke Xu,et al.  High-responsivity graphene/silicon-heterostructure waveguide photodetectors , 2013, Nature Photonics.

[3]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[4]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[5]  T. Low,et al.  Layer Tunable Third-Harmonic Generation in Multilayer Black Phosphorus , 2016, 1607.05619.

[6]  M. Engel,et al.  Light–matter interaction in a microcavity-controlled graphene transistor , 2011, Nature Communications.

[7]  Joseph Shappir,et al.  Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. , 2011, Nano letters.

[8]  Vibhor Singh,et al.  Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping , 2013, 1311.4829.

[9]  Ali Adibi,et al.  On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform. , 2015, Nano letters.

[10]  Eyal Feigenbaum,et al.  Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides. , 2010, Nano letters.

[11]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[12]  Shuigang Xu,et al.  Achieving Ultrahigh Carrier Mobility in Two-Dimensional Hole Gas of Black Phosphorus. , 2016, Nano letters.

[13]  Madan Dubey,et al.  Two-dimensional material nanophotonics , 2014, 1410.3882.

[14]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[15]  Xiang Zhang,et al.  A graphene-based broadband optical modulator , 2011, Nature.

[16]  K. Nishi,et al.  Si Nano-Photodiode with a Surface Plasmon Antenna , 2005, LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings.

[17]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[18]  J. Appenzeller,et al.  Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model , 2015, Nature Communications.

[19]  Roel Baets,et al.  Surface enhanced raman spectroscopy using a single mode nanophotonic-plasmonic platform , 2015, 1508.02189.

[20]  P. Klang,et al.  Microcavity-Integrated Graphene Photodetector , 2011, Nano letters.

[21]  Valentyn S Volkov,et al.  Ultralow-Loss CMOS Copper Plasmonic Waveguides. , 2016, Nano letters.

[22]  M. Teich,et al.  Fundamentals of Photonics , 1991 .

[23]  Mingqiang Huang,et al.  Broadband Black‐Phosphorus Photodetectors with High Responsivity , 2016, Advanced materials.

[24]  H. Lezec,et al.  Multiple paths to enhance optical transmission through a single subwavelength slit. , 2003, Physical review letters.

[25]  M. Demarteau,et al.  Tunable transport gap in phosphorene. , 2014, Nano letters.

[26]  R. Baets,et al.  Compact efficient broadband grating coupler for silicon-on-insulator waveguides. , 2004, Optics letters.

[27]  M. Notomi,et al.  Deep-subwavelength plasmonic mode converter with large size reduction for Si-wire waveguide , 2016 .

[28]  Qiangfei Xia,et al.  Black Phosphorus Mid-Infrared Photodetectors with High Gain. , 2016, Nano letters.

[29]  Hao Li,et al.  Near-Infrared Photodetector Based on MoS2/Black Phosphorus Heterojunction , 2016 .

[30]  Vien Van,et al.  Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale. , 2010, Optics express.

[31]  Nathan Youngblood,et al.  Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current , 2014, Nature Photonics.

[32]  F. Xia,et al.  Ultrafast graphene photodetector , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[33]  Mohsen Rahmani,et al.  Adiabatic Nanofocusing in Hybrid Gap Plasmon Waveguides on the Silicon-on-Insulator Platform. , 2016, Nano letters.

[34]  Phaedon Avouris,et al.  Black phosphorus photodetector for multispectral, high-resolution imaging. , 2014, Nano letters.

[35]  G. Steele,et al.  Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. , 2014, Nano letters.

[36]  Alan E. Willner,et al.  All-Optical Signal Processing , 2014, Journal of Lightwave Technology.

[37]  Kenneth L. Shepard,et al.  Chip-integrated ultrafast graphene photodetector with high responsivity , 2013, Nature Photonics.

[38]  J. Shappir,et al.  On-Chip Integrated, Silicon–Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain , 2015, Nano letters.

[39]  Yijie Huo,et al.  Antenna electrodes for controlling electroluminescence , 2012, Nature Communications.

[40]  Steven J. Koester,et al.  Ambipolar Black Phosphorus MOSFETs With Record n-Channel Transconductance , 2016, IEEE Electron Device Letters.

[41]  F. Xia,et al.  Photoconductivity of biased graphene , 2012, Nature Photonics.

[42]  Thomas Mueller,et al.  Mechanisms of photoconductivity in atomically thin MoS2. , 2014, Nano letters.

[43]  Luis Martín-Moreno,et al.  Light passing through subwavelength apertures , 2010 .

[44]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[45]  M. Engel,et al.  High-Performance p-Type Black Phosphorus Transistor with Scandium Contact. , 2016, ACS nano.

[46]  Ming C. Wu,et al.  Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper , 2012, Nature Photonics.

[47]  Raluca Dinu,et al.  High-speed plasmonic phase modulators , 2014, Nature Photonics.

[48]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[49]  R. Salas-Montiel,et al.  Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics. , 2010, Nano letters.

[50]  Le Cai,et al.  Ultrashort Channel Length Black Phosphorus Field-Effect Transistors. , 2015, ACS nano.

[51]  Picosecond photoresponse in van der Waals heterostructures. , 2015, Nature nanotechnology.

[52]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[53]  Nathan Youngblood,et al.  Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. , 2014, Nano letters.

[54]  Pierre Berini,et al.  Surface plasmon waveguide Schottky detector. , 2010, Optics express.

[55]  Giuseppe Iannaccone,et al.  Electronics based on two-dimensional materials. , 2014, Nature nanotechnology.

[56]  Wei Ji,et al.  High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus , 2014, Nature communications.

[57]  Sang‐Hyun Oh,et al.  Ultralow-Power Electronic Trapping of Nanoparticles with Sub-10 nm Gold Nanogap Electrodes. , 2016, Nano letters.