Constructions for optimal (v, 4, 1) optical orthogonal codes

Four direct constructions, three of which are by way of skew starters, are given in this correspondence for optimal (/spl upsi/, 4, 1) optical orthogonal codes (OOC's). These improve the known existence results concerning optimal (/spl upsi/, 4, 1)-OOCs. In particular, it is shown that an optimal (/spl upsi/, 4, 1)-OOC exists for all positive integers /spl upsi//spl equiv/6 (mod 12) or /spl upsi//spl equiv/24 (mod 48). It is also shown that an optimal (12/spl upsi/, 4, 1)-OOC exists for any positive integer /spl upsi/ whose prime factors are all congruent to 1 modulo 4.

[1]  M. Buratti Recursive constructions for difference matrices and relative difference families , 1998 .

[2]  O. Moreno,et al.  Multimedia transmission in fiber-optic LANs using optical CDMA , 1996 .

[3]  Alexander Schrijver,et al.  Group divisible designs with block-size four , 1977, Discret. Math..

[4]  D. Jungnickel On difference matrices, resolvable transversal designs and generalized Hadamard matrices , 1979 .

[5]  Ryoh Fuji-Hara,et al.  Optical orthogonal codes: Their bounds and new optimal constructions , 2000, IEEE Trans. Inf. Theory.

[6]  S. V. Maric,et al.  Multirate fiber-optic CDMA: system design and performance analysis , 1998 .

[7]  A. Pott A survey on relative difference sets , 1996 .

[8]  Selmer M. Johnson A new upper bound for error-correcting codes , 1962, IRE Trans. Inf. Theory.

[9]  Jianxing Yin,et al.  Some combinatorial constructions for optical orthogonal codes , 1998, Discret. Math..

[10]  R. C. Bose ON THE CONSTRUCTION OF BALANCED INCOMPLETE BLOCK DESIGNS , 1939 .

[11]  C. Colbourn,et al.  CORR 99-01 Applications of Combinatorial Designs to Communications , Cryptography , and Networking , 1999 .

[12]  Fan Chung Graham,et al.  Optical orthogonal codes: Design, analysis, and applications , 1989, IEEE Trans. Inf. Theory.

[13]  T. Etzion,et al.  Constructions for optimal constant weight cyclically permutable codes and difference families , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[14]  Jawad A. Salehi,et al.  Code division multiple-access techniques in optical fiber networks. II. Systems performance analysis , 1989, IEEE Trans. Commun..

[15]  Masakazu Jimbo,et al.  On a composition of cyclic 2-designs , 1983, Discret. Math..

[16]  N. J. A. Sloane,et al.  Bounds on Mixed Binary/Ternary Codes , 1998, IEEE Trans. Inf. Theory.

[17]  K. Chen,et al.  Existence of (q, k, 1) difference families with q a prime power and k = 4, 5 , 1999 .

[18]  Marco Buratti,et al.  Constructions of (q, k, 1) difference families with q a prime power and k = 4, 5 , 1995, Discret. Math..

[19]  Marco Buratti Some Regular Steiner 2-Designs with Block Size 4 , 2000, Ars Comb..

[20]  Jawad A. Salehi,et al.  Code division multiple-access techniques in optical fiber networks. I. Fundamental principles , 1989, IEEE Trans. Commun..

[21]  C. Colbourn,et al.  Recursive constructions for cyclic block designs , 1984 .

[22]  G. Ge,et al.  Starters and related codes , 2000 .

[23]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[24]  L. Zhu,et al.  Existence of (q,6,1) Difference Families withq a Prime Power , 1998, Des. Codes Cryptogr..

[25]  Alan C. H. Ling Difference triangle sets from affine planes , 2002, IEEE Trans. Inf. Theory.