Corrosion of steel bars induced by accelerated carbonation in low and high calcium fly ash geopolymer concretes

Abstract Reinforced geopolymer concretes prepared using three fly ashes of varying Ca content were subjected to accelerated carbonation for a period of 450 days. Changes induced in the concretes were determined after exposure to a 5% CO2 atmosphere, and electrochemical measurements were performed over the time of testing to evaluate the effects of carbonation on the corrosion process of the steel rebars. This study indicates that geopolymer concretes prepared with fly ashes having reduced calcium content are more suitable for the production of durable concrete for structural applications under exposure to carbonating environments, as the properties of these materials seem to mitigate the risk of carbonation-induced reinforcement corrosion in concrete.

[1]  K. Aligizaki Pore Structure of Cement-Based Materials: Testing, Interpretation and Requirements , 2005 .

[2]  J. Deventer,et al.  Geopolymers : structure, processing, properties and industrial applications , 2009 .

[3]  J. Provis Geopolymers and other alkali activated materials: why, how, and what? , 2014 .

[4]  Ángel Palomo,et al.  Activación alcalina de cenizas volantes. Estudio comparativo entre activadores sódicos y potásicos , 2006 .

[5]  Hua Xu,et al.  Effect of Curing Temperature and Silicate Concentration on Fly-Ash-Based Geopolymerization , 2006 .

[6]  T. Bakharev,et al.  Geopolymeric materials prepared using Class F fly ash and elevated temperature curing , 2005 .

[7]  Ángel Palomo,et al.  Engineering Properties of Alkali-Activated Fly Ash Concrete , 2006 .

[8]  J. M. Bastidas,et al.  Corrosion behaviour of a new low-nickel stainless steel embedded in activated fly ash mortars , 2011 .

[9]  S. Simons,et al.  A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. , 2004, Journal of hazardous materials.

[10]  John L. Provis,et al.  Technical and commercial progress in the adoption of geopolymer cement , 2012 .

[11]  Ángel Palomo,et al.  An XRD Study of the Effect of the SiO2/Na2O Ratio on the Alkali Activation of Fly Ash , 2007 .

[12]  John L. Provis,et al.  Accelerated carbonation testing of alkali-activated binders significantly underestimates service lif , 2012 .

[13]  Sidney Diamond,et al.  Mercury porosimetry: An inappropriate method for the measurement of pore size distributions in cement-based materials , 2000 .

[14]  Erez N. Allouche,et al.  Mechanical Properties of Fly-Ash-Based Geopolymer Concrete , 2011 .

[15]  Arie van Riessen,et al.  Determination of the reactive component of fly ashes for geopolymer production using XRF and XRD , 2010 .

[16]  John L. Provis,et al.  Dilatometry of geopolymers as a means of selecting desirable fly ash sources , 2012 .

[17]  Rupert J. Myers,et al.  X-ray microtomography shows pore structure and tortuosity in alkali-activated binders , 2012 .

[18]  J. M. Bastidas,et al.  Corrosion behaviour of a Low Ni austenitic stainless steel in carbonated chloride-polluted alkali-activated fly ash mortar , 2014 .

[19]  E. Allouche,et al.  Factors affecting the suitability of fly ash as source material for geopolymers , 2010 .

[20]  J. M. Bastidas,et al.  Organic corrosion inhibitor mixtures for reinforcing steel embedded in carbonated alkali-activated fly ash mortar , 2012 .

[21]  J. Broomfield Corrosion of Steel in Concrete: Understanding, investigation and repair , 1996 .

[22]  Á. Palomo,et al.  Durability of alkali-activated fly ash cementitious materials , 2007 .

[23]  Erez N. Allouche,et al.  Examination of Chloride-Induced Corrosion in Reinforced Geopolymer Concretes , 2013 .

[24]  E. Allouche,et al.  Corrosion analysis of reinforced geopolymer concretes , 2011 .

[25]  P. Svoboda,et al.  Assessment of phase formation in alkali activated low and high calcium fly ashes in building materials , 2010 .

[26]  Ángel Palomo,et al.  Alkali-activated fly ashes: A cement for the future , 1999 .

[27]  John L. Provis,et al.  Microscopy and microanalysis of inorganic polymer cements. 1: remnant fly ash particles , 2009, Journal of Materials Science.

[28]  Fernando A. Soto,et al.  Multi-scale modeling and experimental investigations of geopolymeric gels at elevated temperatures , 2013 .

[29]  T. Bakharev,et al.  Resistance of geopolymer materials to acid attack , 2005 .

[30]  Ángel Palomo,et al.  Alkali activation of fly ashes. Part 1: Effect of curing conditions on the carbonation of the reaction products , 2005 .

[31]  T. Bakharev,et al.  Durability of Geopolymer Materials in Sodium and Magnesium Sulfate Solutions , 2005 .

[32]  Á. Palomo,et al.  Microstructure Development of Alkali-Activated Fly Ash Cement: A Descriptive Model , 2005 .

[33]  J. González,et al.  Estabilidad del estado pasivo del acero en morteros de ceniza volante activada , 2010 .

[34]  Adam R. Kilcullen,et al.  Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated , 2013 .

[35]  Ángel Palomo,et al.  Corrosion resistance in activated fly ash mortars , 2005 .

[36]  J. Ideker,et al.  Advances in alternative cementitious binders , 2011 .

[37]  Ángel Palomo,et al.  Composition and Microstructure of Alkali Activated Fly Ash Binder: Effect of the Activator , 2005 .

[38]  B. V. Rangan,et al.  Fly ash-based geopolymer concrete: study of slender reinforced columns , 2007 .

[39]  J. Deventer,et al.  Chemical characterisation of the steel–geopolymeric gel interface , 2007 .

[40]  H. Eugster Sodium carbonate‐bicarbonate minerals as indicators of Pco2 , 1966 .

[41]  B. Vijaya Rangan,et al.  ON THE DEVELOPMENT OF FLY ASH-BASED GEOPOLYMER CONCRETE , 2004 .

[42]  John L. Provis,et al.  Binder Chemistry – Blended Systems and Intermediate Ca Content , 2014 .

[43]  J. Davidovits Geopolymer chemistry and applications , 2008 .