Corrosion of steel bars induced by accelerated carbonation in low and high calcium fly ash geopolymer concretes
暂无分享,去创建一个
Erez N. Allouche | John L. Provis | Susan A. Bernal | E. Allouche | J. Provis | K. Kupwade-Patil | Kunal Kupwade-Patil | Md. Sufian Badar | S. A. Bernal
[1] K. Aligizaki. Pore Structure of Cement-Based Materials: Testing, Interpretation and Requirements , 2005 .
[2] J. Deventer,et al. Geopolymers : structure, processing, properties and industrial applications , 2009 .
[3] J. Provis. Geopolymers and other alkali activated materials: why, how, and what? , 2014 .
[4] Ángel Palomo,et al. Activación alcalina de cenizas volantes. Estudio comparativo entre activadores sódicos y potásicos , 2006 .
[5] Hua Xu,et al. Effect of Curing Temperature and Silicate Concentration on Fly-Ash-Based Geopolymerization , 2006 .
[6] T. Bakharev,et al. Geopolymeric materials prepared using Class F fly ash and elevated temperature curing , 2005 .
[7] Ángel Palomo,et al. Engineering Properties of Alkali-Activated Fly Ash Concrete , 2006 .
[8] J. M. Bastidas,et al. Corrosion behaviour of a new low-nickel stainless steel embedded in activated fly ash mortars , 2011 .
[9] S. Simons,et al. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. , 2004, Journal of hazardous materials.
[10] John L. Provis,et al. Technical and commercial progress in the adoption of geopolymer cement , 2012 .
[11] Ángel Palomo,et al. An XRD Study of the Effect of the SiO2/Na2O Ratio on the Alkali Activation of Fly Ash , 2007 .
[12] John L. Provis,et al. Accelerated carbonation testing of alkali-activated binders significantly underestimates service lif , 2012 .
[13] Sidney Diamond,et al. Mercury porosimetry: An inappropriate method for the measurement of pore size distributions in cement-based materials , 2000 .
[14] Erez N. Allouche,et al. Mechanical Properties of Fly-Ash-Based Geopolymer Concrete , 2011 .
[15] Arie van Riessen,et al. Determination of the reactive component of fly ashes for geopolymer production using XRF and XRD , 2010 .
[16] John L. Provis,et al. Dilatometry of geopolymers as a means of selecting desirable fly ash sources , 2012 .
[17] Rupert J. Myers,et al. X-ray microtomography shows pore structure and tortuosity in alkali-activated binders , 2012 .
[18] J. M. Bastidas,et al. Corrosion behaviour of a Low Ni austenitic stainless steel in carbonated chloride-polluted alkali-activated fly ash mortar , 2014 .
[19] E. Allouche,et al. Factors affecting the suitability of fly ash as source material for geopolymers , 2010 .
[20] J. M. Bastidas,et al. Organic corrosion inhibitor mixtures for reinforcing steel embedded in carbonated alkali-activated fly ash mortar , 2012 .
[21] J. Broomfield. Corrosion of Steel in Concrete: Understanding, investigation and repair , 1996 .
[22] Á. Palomo,et al. Durability of alkali-activated fly ash cementitious materials , 2007 .
[23] Erez N. Allouche,et al. Examination of Chloride-Induced Corrosion in Reinforced Geopolymer Concretes , 2013 .
[24] E. Allouche,et al. Corrosion analysis of reinforced geopolymer concretes , 2011 .
[25] P. Svoboda,et al. Assessment of phase formation in alkali activated low and high calcium fly ashes in building materials , 2010 .
[26] Ángel Palomo,et al. Alkali-activated fly ashes: A cement for the future , 1999 .
[27] John L. Provis,et al. Microscopy and microanalysis of inorganic polymer cements. 1: remnant fly ash particles , 2009, Journal of Materials Science.
[28] Fernando A. Soto,et al. Multi-scale modeling and experimental investigations of geopolymeric gels at elevated temperatures , 2013 .
[29] T. Bakharev,et al. Resistance of geopolymer materials to acid attack , 2005 .
[30] Ángel Palomo,et al. Alkali activation of fly ashes. Part 1: Effect of curing conditions on the carbonation of the reaction products , 2005 .
[31] T. Bakharev,et al. Durability of Geopolymer Materials in Sodium and Magnesium Sulfate Solutions , 2005 .
[32] Á. Palomo,et al. Microstructure Development of Alkali-Activated Fly Ash Cement: A Descriptive Model , 2005 .
[33] J. González,et al. Estabilidad del estado pasivo del acero en morteros de ceniza volante activada , 2010 .
[34] Adam R. Kilcullen,et al. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated , 2013 .
[35] Ángel Palomo,et al. Corrosion resistance in activated fly ash mortars , 2005 .
[36] J. Ideker,et al. Advances in alternative cementitious binders , 2011 .
[37] Ángel Palomo,et al. Composition and Microstructure of Alkali Activated Fly Ash Binder: Effect of the Activator , 2005 .
[38] B. V. Rangan,et al. Fly ash-based geopolymer concrete: study of slender reinforced columns , 2007 .
[39] J. Deventer,et al. Chemical characterisation of the steel–geopolymeric gel interface , 2007 .
[40] H. Eugster. Sodium carbonate‐bicarbonate minerals as indicators of Pco2 , 1966 .
[41] B. Vijaya Rangan,et al. ON THE DEVELOPMENT OF FLY ASH-BASED GEOPOLYMER CONCRETE , 2004 .
[42] John L. Provis,et al. Binder Chemistry – Blended Systems and Intermediate Ca Content , 2014 .
[43] J. Davidovits. Geopolymer chemistry and applications , 2008 .