Empirical Study for Communication Cost of Parallel Conjugate Gradient on a Star-Based Network
暂无分享,去创建一个
[1] Martin Fodslette Møller,et al. A scaled conjugate gradient algorithm for fast supervised learning , 1993, Neural Networks.
[2] Susumu Yamada,et al. High Performance Computing for Eigenvalue Solver in Density-Matrix Renormalization Group Method: Parallelization of the Hamiltonian Matrix-Vector Multiplication , 2008, VECPAR.
[3] Youngjoo Kim,et al. Performance of Parallel Conjugate Gradient Solvers in Meshfree Analysis , 2003 .
[4] Andrzej Jordan,et al. A new version of conjugate gradient method parallel implementation , 2002, Proceedings. International Conference on Parallel Computing in Electrical Engineering.
[5] J. Shewchuk. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .
[6] D. O’Leary. The block conjugate gradient algorithm and related methods , 1980 .
[7] J.G. Lewis,et al. Matrix-vector multiplication and conjugate gradient algorithms on distributed memory computers , 1994, Proceedings of IEEE Scalable High Performance Computing Conference.
[8] M. Møller. A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning , 1990 .
[9] J. G. Lewis,et al. Distributed memory matrix-vector multiplication and conjugate gradient algorithms , 1993, Supercomputing '93.
[10] Gerd Heber,et al. Landing CG on EARTH: A Case Study of Fine-Grained Multithreading on an Evolutionary Path , 2000, ACM/IEEE SC 2000 Conference (SC'00).
[11] Martyn R. Field. Optimizing a Parallel Conjugate Gradient Solver , 1998, SIAM J. Sci. Comput..
[12] Andrzej Jordan,et al. The Parallel Algorithm of Conjugate Gradient Method , 2001, IWCC.
[13] Guang R. Gao,et al. Implementing parallel conjugate gradient on the EARTH multithreaded architecture , 2004, 2004 IEEE International Conference on Cluster Computing (IEEE Cat. No.04EX935).
[14] Dianne P. O'Leary,et al. Parallel implementation of the block conjugate gradient algorithm , 1987, Parallel Comput..
[15] Hee-Dae Kwon. Efficient parallel implementations of finite element methods based on the conjugate gradient method , 2003, Appl. Math. Comput..