Characteristics and plasticity of electrical synaptic transmission

[1]  C. Ribelayga,et al.  Circadian clock control of connexin36 phosphorylation in retinal photoreceptors of the CBA/CaJ mouse strain , 2015, Visual Neuroscience.

[2]  Ryan Neely,et al.  Activation of Group I and Group II Metabotropic Glutamate Receptors Causes LTD and LTP of Electrical Synapses in the Rat Thalamic Reticular Nucleus , 2015, The Journal of Neuroscience.

[3]  C. Ribelayga,et al.  Rod electrical coupling is controlled by a circadian clock and dopamine in mouse retina , 2015, The Journal of physiology.

[4]  Yosef Yarom,et al.  Cerebellar Inhibitory Input to the Inferior Olive Decreases Electrical Coupling and Blocks Subthreshold Oscillations , 2014, Neuron.

[5]  A. Chuang,et al.  Regulation of photoreceptor gap junction phosphorylation by adenosine in zebrafish retina , 2014, Visual Neuroscience.

[6]  A. Belousov,et al.  Neuronal gap junctions: making and breaking connections during development and injury , 2013, Trends in Neurosciences.

[7]  C. Ribelayga,et al.  Adenosine and Dopamine Receptors Coregulate Photoreceptor Coupling via Gap Junction Phosphorylation in Mouse Retina , 2013, The Journal of Neuroscience.

[8]  S. Sekaran,et al.  Diurnal and circadian regulation of connexin 36 transcript and protein in the mammalian retina. , 2013, Investigative ophthalmology & visual science.

[9]  D. Spray,et al.  Calmodulin dependent protein kinase increases conductance at gap junctions formed by the neuronal gap junction protein connexin36 , 2012, Brain Research.

[10]  Wei Li,et al.  Nonsynaptic NMDA Receptors Mediate Activity-Dependent Plasticity of Gap Junctional Coupling in the AII Amacrine Cell Network , 2012, The Journal of Neuroscience.

[11]  G. Hoge,et al.  Synergy between Electrical Coupling and Membrane Properties Promotes Strong Synchronization of Neurons of the Mesencephalic Trigeminal Nucleus , 2012, The Journal of Neuroscience.

[12]  Yongfu Wang,et al.  Regulation of connexin 36 expression during development , 2012, Neuroscience Letters.

[13]  M. Bennett,et al.  Trafficking of gap junction channels at a vertebrate electrical synapse in vivo , 2012, Proceedings of the National Academy of Sciences.

[14]  Yongfu Wang,et al.  Neuronal Gap Junction Coupling Is Regulated by Glutamate and Plays Critical Role in Cell Death during Neuronal Injury , 2012, The Journal of Neuroscience.

[15]  Marvin N. Steijaert,et al.  Synaptic Transmission from Horizontal Cells to Cones Is Impaired by Loss of Connexin Hemichannels , 2011, PLoS biology.

[16]  R. Silver,et al.  Rapid Desynchronization of an Electrically Coupled Interneuron Network with Sparse Excitatory Synaptic Input , 2010, Neuron.

[17]  B. Connors,et al.  Enhanced Functions of Electrical Junctions , 2010, Neuron.

[18]  Alice Z Chuang,et al.  Photoreceptor Coupling Is Controlled by Connexin 35 Phosphorylation in Zebrafish Retina , 2009, The Journal of Neuroscience.

[19]  S. Massey,et al.  Dopamine-Stimulated Dephosphorylation of Connexin 36 Mediates AII Amacrine Cell Uncoupling , 2009, The Journal of Neuroscience.

[20]  B. Connors,et al.  Stability of Electrical Coupling despite Massive Developmental Changes of Intrinsic Neuronal Physiology , 2009, The Journal of Neuroscience.

[21]  K. Willecke,et al.  The neuronal connexin36 interacts with and is phosphorylated by CaMKII in a way similar to CaMKII interaction with glutamate receptors , 2008, Proceedings of the National Academy of Sciences.

[22]  C. Ribelayga,et al.  The Circadian Clock in the Retina Controls Rod-Cone Coupling , 2008, Neuron.

[23]  B. Bean The action potential in mammalian central neurons , 2007, Nature Reviews Neuroscience.

[24]  G. Burr,et al.  Connexin 35/36 is phosphorylated at regulatory sites in the retina , 2007, Visual Neuroscience.

[25]  Mario Pieper,et al.  Localization of heterotypic gap junctions composed of connexin45 and connexin36 in the rod pathway of the mouse retina , 2006, The European journal of neuroscience.

[26]  W. Dubinsky,et al.  Regulation of Gap Junction Coupling Through the Neuronal Connexin Cx35 by Nitric Oxide and cGMP , 2006, Cell communication & adhesion.

[27]  B. Connors,et al.  Long-Term Modulation of Electrical Synapses in the Mammalian Thalamus , 2005, Science.

[28]  Marla B Feller,et al.  Expression and function of the neuronal gap junction protein connexin 36 in developing mammalian retina , 2005, The Journal of comparative neurology.

[29]  S. Massey,et al.  Electrical synapses in retinal ON cone bipolar cells: subtype-specific expression of connexins. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[30]  A. Moreno,et al.  Biophysical evidence that connexin-36 forms functional gap junction channels between pancreatic mouse beta-cells. , 2005, American journal of physiology. Endocrinology and metabolism.

[31]  G. Burr,et al.  Protein kinase A mediates regulation of gap junctions containing connexin35 through a complex pathway. , 2005, Brain research. Molecular brain research.

[32]  J. Gemel,et al.  Dynamic model for ventricular junctional conductance during the cardiac action potential. , 2005, American journal of physiology. Heart and circulatory physiology.

[33]  R. Weiler,et al.  Deletion of Connexin45 in Mouse Retinal Neurons Disrupts the Rod/Cone Signaling Pathway between AII Amacrine and ON Cone Bipolar Cells and Leads to Impaired Visual Transmission , 2005, The Journal of Neuroscience.

[34]  C. Ribelayga,et al.  A Circadian Clock and Light/Dark Adaptation Differentially Regulate Adenosine in the Mammalian Retina , 2005, The Journal of Neuroscience.

[35]  Lidia Szczupak,et al.  Gap junctions , 2004, Molecular Neurobiology.

[36]  M. Bennett,et al.  Dynamics of electrical transmission at club endings on the Mauthner cells , 2004, Brain Research Reviews.

[37]  Béla Völgyi,et al.  Function and plasticity of homologous coupling between AII amacrine cells , 2004, Vision Research.

[38]  A. Pereda,et al.  Voltage-Dependent Enhancement of Electrical Coupling by a Subthreshold Sodium Current , 2004, The Journal of Neuroscience.

[39]  V. Verselis,et al.  Gap junction channel gating. , 2004, Biochimica et biophysica acta.

[40]  R. Bruzzone,et al.  Molecular Cloning and Functional Expression of zfCx52.6 , 2004, Journal of Biological Chemistry.

[41]  M. Szente,et al.  Involvement of Gap Junctions in the Manifestation and Control of the Duration of Seizures in Rats In Vivo , 2003, Epilepsia.

[42]  T. Sejnowski,et al.  Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. , 2003, Physiological reviews.

[43]  C. Naus,et al.  Epileptiform activity in hippocampal slice cultures exposed chronically to bicuculline: increased gap junctional function and expression , 2003, Journal of neurochemistry.

[44]  R. Bruzzone,et al.  Modulation of perch connexin35 hemi‐channels by cyclic AMP requires a protein kinase A phosphorylation site , 2003, Journal of neuroscience research.

[45]  G. I. Hatton,et al.  Histamine H1-receptor modulation of inter-neuronal coupling among vasopressinergic neurons depends on nitric oxide synthase activation , 2002, Brain Research.

[46]  C. Ribelayga,et al.  Dopamine mediates circadian clock regulation of rod and cone input to fish retinal horizontal cells , 2002, The Journal of physiology.

[47]  Anna Devor,et al.  Generation and propagation of subthreshold waves in a network of inferior olivary neurons. , 2002, Journal of neurophysiology.

[48]  M. Bennett,et al.  Coupling asymmetry of heterotypic connexin 45/ connexin 43-EGFP gap junctions: Properties of fast and slow gating mechanisms , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[49]  E. Hartveit,et al.  AII (Rod) Amacrine Cells Form a Network of Electrically Coupled Interneurons in the Mammalian Retina , 2002, Neuron.

[50]  Michael A Long,et al.  Electrical Synapses in the Thalamic Reticular Nucleus , 2002, The Journal of Neuroscience.

[51]  P. Carlen,et al.  Specific Gap Junctions Enhance the Neuronal Vulnerability to Brain Traumatic Injury , 2002, The Journal of Neuroscience.

[52]  M. Bennett,et al.  Global Ischemia-Induced Increases in the Gap Junctional Proteins Connexin 32 (Cx32) and Cx36 in Hippocampus and Enhanced Vulnerability of Cx32 Knock-Out Mice , 2001, The Journal of Neuroscience.

[53]  A. Harris Emerging issues of connexin channels: biophysics fills the gap , 2001, Quarterly Reviews of Biophysics.

[54]  S. Massey,et al.  Rod pathways in the mammalian retina use connexin 36 , 2001, The Journal of comparative neurology.

[55]  S. H. Chandler,et al.  Membrane Resonance and Subthreshold Membrane Oscillations in Mesencephalic V Neurons: Participants in Burst Generation , 2001, The Journal of Neuroscience.

[56]  G. I. Hatton,et al.  Ionotropic Histamine Receptors and H2 Receptors Modulate Supraoptic Oxytocin Neuronal Excitability and Dye Coupling , 2001, The Journal of Neuroscience.

[57]  R. Weiler,et al.  Molecular and Functional Diversity of Neural Connexins in the Retina , 2000, The Journal of Neuroscience.

[58]  B. Teubner,et al.  Functional Expression of the Murine Connexin 36 Gene Coding for a Neuron-Specific Gap Junctional Protein , 2000, The Journal of Membrane Biology.

[59]  N. Belluardo,et al.  Expression of Connexin36 in the adult and developing rat brain 1 1 Published on the World Wide Web on 12 April 2000. , 2000, Brain Research.

[60]  Y. Yarom,et al.  Resonance, oscillation and the intrinsic frequency preferences of neurons , 2000, Trends in Neurosciences.

[61]  D. Spray,et al.  Temporal expression of neuronal connexins during hippocampal ontogeny , 2000, Brain Research Reviews.

[62]  D. Condorelli,et al.  Functional Properties of Channels Formed by the Neuronal Gap Junction Protein Connexin36 , 1999, The Journal of Neuroscience.

[63]  S. Hestrin,et al.  A network of fast-spiking cells in the neocortex connected by electrical synapses , 1999, Nature.

[64]  R. Russo,et al.  Dynamics of intrinsic electrophysiological properties in spinal cord neurones. , 1999, Progress in biophysics and molecular biology.

[65]  I. Pose,et al.  Oscillatory membrane potential activity in the soma of a primary afferent neuron. , 1999, Journal of neurophysiology.

[66]  Y Yarom,et al.  Electrotonic Coupling Interacts with Intrinsic Properties to Generate Synchronized Activity in Cerebellar Networks of Inhibitory Interneurons , 1999, The Journal of Neuroscience.

[67]  D. Faber,et al.  Ca2+/calmodulin-dependent kinase II mediates simultaneous enhancement of gap-junctional conductance and glutamatergic transmission. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[68]  S. Bloomfield,et al.  Light-induced modulation of coupling between AII amacrine cells in the rabbit retina , 1997, Visual Neuroscience.

[69]  W. G. Owen,et al.  Dopamine D2 receptor‐mediated modulation of rod‐cone coupling in the Xenopus retina , 1996, The Journal of comparative neurology.

[70]  D S Faber,et al.  Activity-dependent short-term enhancement of intercellular coupling , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[71]  S. Massey,et al.  Differential properties of two gap junctional pathways made by AII amacrine cells , 1995, Nature.

[72]  A. Pereda,et al.  Retrograde synaptic communication via gap junctions coupling auditory afferents to the Mauthner cell , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[73]  A. Moreno,et al.  Properties of gap junction channels formed of connexin 45 endogenously expressed in human hepatoma (SKHep1) cells. , 1995, The American journal of physiology.

[74]  S. Baum,et al.  The Effects of Aspirin on Gastric Prostaglandins , 1994, Annals of Internal Medicine.

[75]  R. Todd,et al.  Photoreceptors of mouse retinas possess D4 receptors coupled to adenylate cyclase. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[76]  R. Weiler,et al.  Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[77]  J. Dowling,et al.  Horizontal cell gap junctions: single-channel conductance and modulation by dopamine. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[78]  E. A. Schwartz,et al.  Modulation of an electrical synapse between solitary pairs of catfish horizontal cells by dopamine and second messengers. , 1989, The Journal of physiology.

[79]  R. Llinás The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. , 1988, Science.

[80]  J. Dowling,et al.  Dopamine decreases conductance of the electrical junctions between cultured retinal horizontal cells. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[81]  M. Piccolino,et al.  Decrease of gap junction permeability induced by dopamine and cyclic adenosine 3':5'-monophosphate in horizontal cells of turtle retina , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[82]  K. Negishi,et al.  Regulatory effect of dopamine on spatial properties of horizontal cells in carp retina , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[83]  J. Dowling,et al.  Pharmacological properties of isolated fish horizontal cells , 1983, Vision Research.

[84]  Satoru Kato,et al.  Dopamine modulates S-potential amplitude and dye-coupling between external horizontal cells in carp retina , 1983, Nature.

[85]  J. Dowling,et al.  Isolated horizontal cells from carp retina demonstrate dopamine-dependent accumulation of cyclic AMP. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[86]  E. Kandel,et al.  Two functional effects of decreased conductance EPSP's: synaptic augmentation and increased electrotonic coupling. , 1976, Science.

[87]  R. Llinás,et al.  Eighteenth Bowditch lecture. Motor aspects of cerebellar control. , 1974, The Physiologist.

[88]  M. Spira,et al.  Synaptic control of electrotonic coupling between neurons. , 1972, Brain research.

[89]  M. Bennett,et al.  PHYSIOLOGY OF ELECTROTONIC JUNCTIONS * , 1966, Annals of the New York Academy of Sciences.

[90]  D. Potter,et al.  Slow post‐synaptic potentials recorded from the giant motor fibre of the crayfish , 1959, The Journal of physiology.

[91]  A. Watanabe,et al.  The interaction of electrical activity among neurons of lobster cardiac ganglion. , 1958, The Japanese journal of physiology.

[92]  D. Potter,et al.  Mechanism of Nerve-Impulse Transmission at a Crayfish Synapse , 1957, Nature.

[93]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[94]  John P. Welsh,et al.  NMDA Receptor Activation Strengthens Weak Electrical Coupling in Mammalian Brain , 2014 .

[95]  M. Bennett,et al.  Electrical Transmission: A Functional Analysis and Comparison to Chemical Transmission , 2011 .

[96]  Antony W. Goodwin,et al.  ELECTRICAL SYNAPSES IN THE MAMMALIAN BRAIN , 2010 .

[97]  Wasif Naeem,et al.  Concepts in Electric Circuits , 2009 .

[98]  H. Nawashiro,et al.  Alteration of gap junction proteins (connexins) following lateral fluid percussion injury in rats. , 2006, Acta neurochirurgica. Supplement.

[99]  B. Connors,et al.  Functional properties of electrical synapses between inhibitory interneurons of neocortical layer 4. , 2005, Journal of neurophysiology.

[100]  P. Brink,et al.  Electrotonic Coupling in the Nervous System , 1987 .

[101]  K. Negishi,et al.  Effects of catecholamines and related compounds on horizontal cells in the fish retina , 1979, Journal of neuroscience research.

[102]  R. Keynes The ionic channels in excitable membranes. , 1975, Ciba Foundation symposium.

[103]  Supplemental Data Supplemental Experimental Procedures Slices preparation , 2022 .

[104]  Heinke,et al.  Spike Transmission and Synchrony Detection in Networks of GABAergic Interneurons , 2022 .