Longitudinal Label-free Tracking of Cell Death Dynamics in Living Engineered Human Skin Tissue with a Multimodal Microscope References and Links

We demonstrate real-time, longitudinal, label-free tracking of apoptotic and necrotic cells in living tissue using a multimodal microscope. The integrated imaging platform combines multi-photon microscopy (MPM, based on two-photon excitation fluorescence), optical coherence microscopy (OCM), and fluorescence lifetime imaging microscopy (FLIM). Three-dimensional (3-D) co-registered images are captured that carry comprehensive information of the sample, including structural, molecular, and metabolic properties, based on light scattering, autofluorescence intensity, and autofluorescence lifetime, respectively. Different cell death processes, namely, apoptosis and necrosis, of keratinocytes from different epidermal layers are longitudinally monitored and investigated. Differentiation of the two cell death processes in a complex living tissue environment is enabled by quantitative image analysis and high-confidence classification processing based on the multidimensional, cross-validating imaging data. These results suggest that despite the limitations of each individual label-free modality, this multimodal imaging approach holds the promise for studies of different cell death processes in living tissue and in vivo organs.

Marina Marjanovic | Stephen A Boppart | Eric J Chaney | Marni D Boppart | Youbo Zhao | Benedikt W. Graf | Benedikt W Graf | J. Schuman | J. Strickler | P. Bacon | C. Talbot | M. Bogyo | C. Puliafito | S. Boppart | C. Pitris | M. Brezinski | W. Stinson | K. Gregory | S. Seidenari | B. Bouma | D. Faber | M. Aalders | K. Brindle | K. Nowaczyk | E. Chaney | J. Southern | K. Eliceiri | M. Sodeoka | C. Dive | M. Schanne-Klein | C. Dunsby | Ziad S. Mahmassani | M. Boppart | L. Loizou | M. Sherar | H. Studier | J. Tjiu | M. Marjanovic | D. Spillman | Youbo Zhao | A. Palonpon | M. Kolios | A. Giles | M. Strupler | T. Boulesteix | M. Beauchemin | J. Yu | R. Devolder | Ziad Mahmassani | J. Panella | G. Ponti | M. Guanti | S. Schianchi | V. Chaturvedi | N. Lineberry | H. Endo | E. Antoniadou | A. Gendron‐Fitzpatrick | P. French | N. Ramanujam | K. Fujita | T. Flotte | D. Guardoli | B. Graf | B. Debeljevic | N. Shemonski | B. W. Graf | V. Bellini | D. R. Garrod | K. Riching | E. Swanson | G. Pellacani | V. Gukassyan | V. Albrow | M. Paulick | Z. Mahmassani | M. F. Denning | G. Jerusalem | J. Xylas | H. Szmacinski | T. Lambert | B. D. Smith | R. M. Williams | J. Fujimoto | Wang | V. X. Yang | G. Czarnota | N. Weissman | W. Webb | Skala | Aguirre | D. Huang | M. Hee | P. Hsiung | I. Hartl | I. Georgakoudi | M. Johnson | A M Pena | K. König | A. Levitt | R. Hustinx | Zhao | G J Tearney | T. van Leeuwen | C. P. Lin | W. Chang | B. Nickoloff | N. I. Smith | F. P. Ottensmeyer | C. E. Ulukaya | Y. Acilan | Yilmaz | Kerr | C. M. Winterford | B. V. Harmon | Apoptosis | C. T. Chen | Y. H. Wei | H. W. Guo | J. S. Yu | F. J. Kao | Boppart | F J Van Der Meer | A. Poot | I. Vermes | G Farhat | N C Cheng | T. H. Hsieh | Y. T. Wang | C. Lai | C. K. Chang | M. Y. Lin | S. L. Huang | Tan | T. A. Desai | D. Leckband | M Okada | S. Kawata | Label-Free Raman | A. Baldwin | A. Papadakis | S. Puri | K. Münger | J. G. M. Buschke | J. J. Squirrell | K. W. Fong | B. M. Eliceiri | Ogle | T Belhocine | N. Steinmetz | P. Bartsch | L. Seidel | P. Rigo | A. Green | M Zhao | D. A. Beauregard | B. Davletov | G J Czarnota | J. Abraham | M. Portnoy | J. W. Hunt | B Banihashemi | R. Vlad | L E Edgington | A. B. Berger | G. Blum | W Denk | T. H. Ko | J R Lakowicz | H. Kong | B W Graf | Multimodal | H G Breunig | E Benati | S. Borsari | C. Ferrari | K. Koenig | W R Zipfel | R. Christie | A. Y. Nikitin | B. T. Hyman | J. Eickhoff | J. G. White | S Bergeron | R. Bertrand | J Z Qin | D. Choubey | B M Corfe | R G Hanshaw | C. Lakshmi | J. R. Johnson | H. Nakamura | R. J. Gordon | W C Kuo | J. Kim | W Jung | M. Jeon | C. N. Stewart | T. Hsieh

[1]  B E Bouma,et al.  Images in cardiovascular medicine. Catheter-based optical imaging of a human coronary artery. , 1996, Circulation.

[2]  F. Blankenberg,et al.  In Vivo Detection of Apoptosis , 2008, Journal of Nuclear Medicine.

[3]  Jeng-Wei Tjiu,et al.  Cell death detection by quantitative three-dimensional single-cell tomography , 2012, Biomedical optics express.

[4]  Erik H. W. Meijering,et al.  Cell Segmentation: 50 Years Down the Road [Life Sciences] , 2012, IEEE Signal Processing Magazine.

[5]  Stephen A. Boppart,et al.  Multimodal In Vivo Skin Imaging with Integrated Optical Coherence and Multiphoton Microscopy , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[6]  C. Winterford,et al.  Apoptosis. Its significance in cancer and cancer Therapy , 1994, Cancer.

[7]  N. Ramanujam,et al.  In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia , 2007, Proceedings of the National Academy of Sciences.

[8]  Roland Hustinx,et al.  Increased uptake of the apoptosis-imaging agent (99m)Tc recombinant human Annexin V in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosis. , 2002, Clinical cancer research : an official journal of the American Association for Cancer Research.

[9]  Stephen A. Boppart,et al.  Optical coherence tomography of cell dynamics in three-dimensional engineered tissues , 2005, European Conference on Biomedical Optics.

[10]  M. Beauchemin,et al.  Camptothecin- and etoposide-induced apoptosis in human leukemia cells is independent of cell death receptor-3 and -4 aggregation but accelerates tumor necrosis factor-related apoptosis-inducing ligand-mediated cell death. , 2004, Molecular cancer therapeutics.

[11]  Nathan D. Shemonski,et al.  Real-time three-dimensional optical coherence tomography image-guided core-needle biopsy system , 2012, Biomedical optics express.

[12]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[13]  J W Hunt,et al.  © 1999 Cancer Research Campaign Article no. bjoc.1999.0724 Ultrasound imaging of apoptosis: high-resolution noninvasive , 2022 .

[14]  K. Münger,et al.  Intrinsic fluorescence and redox changes associated with apoptosis of primary human epithelial cells. , 2006, Journal of biomedical optics.

[15]  Brett E. Bouma,et al.  In vivo cellular optical coherence tomography imaging , 1998, Nature Medicine.

[16]  Satoshi Kawata,et al.  Label-free Raman observation of cytochrome c dynamics during apoptosis , 2011, Proceedings of the National Academy of Sciences.

[17]  Jeehyun Kim,et al.  Handheld Optical Coherence Tomography Scanner for Primary Care Diagnostics , 2011, IEEE Transactions on Biomedical Engineering.

[18]  K. Eliceiri,et al.  Cell death, non‐invasively assessed by intrinsic fluorescence intensity of NADH, is a predictive indicator of functional differentiation of embryonic stem cells , 2012, Biology of the cell.

[19]  B. Corfe,et al.  Changes in intercellular junctions during apoptosis precede nuclear condensation or phosphatidylserine exposure on the cell surface , 2000, Cell Death and Differentiation.

[20]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[21]  A. Pena,et al.  Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy. , 2005, Optics express.

[22]  Michael C. Kolios,et al.  Ultrasound imaging of apoptosis in tumor response: novel preclinical monitoring of photodynamic therapy effects. , 2008, Cancer research.

[23]  Victor X D Yang,et al.  Detecting cell death with optical coherence tomography and envelope statistics. , 2011, Journal of biomedical optics.

[24]  D. Choubey,et al.  Regulation of apoptosis by p53 in UV-irradiated human epidermis, psoriatic plaques and senescent keratinocytes , 2002, Oncogene.

[25]  Stephen A Boppart,et al.  Integrated multimodal optical microscopy for structural and functional imaging of engineered and natural skin , 2012, Journal of biophotonics.

[26]  W. Webb,et al.  Nonlinear magic: multiphoton microscopy in the biosciences , 2003, Nature Biotechnology.

[27]  R. Gordon,et al.  Development of a versatile two-photon endoscope for biological imaging , 2010, Biomedical optics express.

[28]  Stephen A. Boppart,et al.  Optical coherence tomography of cell dynamics in three-dimensional engineered tissues , 2005, SPIE BiOS.

[29]  J. Lakowicz,et al.  Fluorescence lifetime imaging of free and protein-bound NADH. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Ming Zhao,et al.  Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent , 2001, Nature Medicine.

[31]  E. Ulukaya,et al.  Apoptosis: why and how does it occur in biology? , 2011, Cell biochemistry and function.

[32]  D. Vaux,et al.  Apoptosis in the development and treatment of cancer. , 2004, Carcinogenesis.

[33]  Matthew Bogyo,et al.  Noninvasive optical imaging of apoptosis by caspase-targeted activity-based probes , 2009, Nature Medicine.

[34]  W. Webb,et al.  Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[35]  J G Fujimoto,et al.  High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging. , 2003, Optics letters.

[36]  E. Meijering Cell Segmentation: 50 Years Down the Road [Life Sciences] , 2012, IEEE Signal Processing Magazine.

[37]  Fu-Jen Kao,et al.  Differentiation of apoptosis from necrosis by dynamic changes of reduced nicotinamide adenine dinucleotide fluorescence lifetime in live cells. , 2008, Journal of biomedical optics.

[38]  A. Saraste,et al.  Morphologic and biochemical hallmarks of apoptosis. , 2000, Cardiovascular research.

[39]  Freek J. van der Meer,et al.  ORIGINAL ARTICLE , 2006 .

[40]  Hans Georg Breunig,et al.  Multiphoton excitation characteristics of cellular fluorophores of human skin in vivo. , 2010, Optics express.

[41]  C. Thompson,et al.  Apoptosis in the pathogenesis and treatment of disease , 1995, Science.

[42]  James R. Johnson,et al.  Fluorescent Detection of Apoptotic Cells by Using Zinc Coordination Complexes with a Selective Affinity for Membrane Surfaces Enriched with Phosphatidylserine , 2005, Chembiochem : a European journal of chemical biology.

[43]  Giovanni Pellacani,et al.  Quantitative evaluation of healthy epidermis by means of multiphoton microscopy and fluorescence lifetime imaging microscopy , 2011, Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging.

[44]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.