Differential Equations for Roaming Pseudospectra: Paths to Extremal Points and Boundary Tracking

When studying the $\varepsilon$-pseudospectrum of a matrix, one is often interested in computing the extremal points having maximum real part or modulus. This is a crucial step, for example, when computing the distance to instability of a stable system. Using the property that the pseudospectrum is determined via perturbations by rank-1 matrices, we derive differential equations on the manifold of normalized rank-1 matrices whose solutions tend to the critical rank-1 perturbations associated with the extremal points of (locally) maximum real part and modulus. This approach also allows us to track the boundary contour of the pseudospectrum in a neighborhood of the extremal points. The technique we propose is related to an idea recently developed by Guglielmi and Overton, who derived discrete dynamical systems instead of the continuous ones we present. The method turns out to be fast in comparison with those previously proposed in the literature and appears to be promising in dealing with large sparse problems.

[1]  A. Lewis,et al.  Robust stability and a criss‐cross algorithm for pseudospectra , 2003 .

[2]  Nicola Guglielmi,et al.  Erratum/Addendum: Differential Equations for Roaming Pseudospectra: Paths to Extremal Points and Boundary Tracking , 2012, SIAM J. Numer. Anal..

[3]  Lloyd N. Trefethen,et al.  Computation of pseudospectra , 1999, Acta Numerica.

[4]  R. Byers A Bisection Method for Measuring the Distance of a Stable Matrix to the Unstable Matrices , 1988 .

[5]  K. Meerbergen,et al.  Matrix transformations for computing rightmost eigenvalues of large sparse non-symmetric eigenvalue problems , 1996 .

[6]  Tosio Kato Perturbation theory for linear operators , 1966 .

[7]  L. Trefethen Spectra and pseudospectra , 2005 .

[8]  H. Kreiss Über Die Stabilitätsdefinition Für Differenzengleichungen Die Partielle Differentialgleichungen Approximieren , 1962 .

[9]  M. Overton,et al.  Algorithms for the computation of the pseudospectral radius and the numerical radius of a matrix , 2005 .

[10]  Michael L. Overton,et al.  Fast Algorithms for the Approximation of the Pseudospectral Abscissa and Pseudospectral Radius of a Matrix , 2011, SIAM J. Matrix Anal. Appl..

[11]  Moody T. Chu,et al.  Linear algebra algorithms as dynamical systems , 2008, Acta Numerica.

[12]  M. Hochbruck,et al.  Exponential integrators , 2010, Acta Numerica.

[13]  Heinz Rutishauser,et al.  Ein infinitesimales Analogon zum Quotienten-Differenzen-Algorithmus , 1954 .

[14]  U. Helmke,et al.  Optimization and Dynamical Systems , 1994, Proceedings of the IEEE.

[15]  H. J. Landau The notion of approximate eigenvalues applied to an integral equation of laser theory , 1977 .

[16]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[17]  E. Strumberger,et al.  Robust control of resistive wall modes using pseudospectra , 2009 .

[18]  L. Trefethen,et al.  Spectra and Pseudospectra , 2020 .

[19]  R. Brockett Dynamical systems that sort lists, diagonalize matrices, and solve linear programming problems , 1991 .

[20]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[21]  Diederich Hinrichsen,et al.  Mathematical Systems Theory I , 2006, IEEE Transactions on Automatic Control.

[22]  A. Spence,et al.  Shift-invert and Cayley transforms for detection of rightmost eigenvalues of nonsymmetric matrices , 1994 .