Colloidal laponite nanoparticles: extended application in direct electrochemistry of glucose oxidase and reagentless glucose biosensing.

[1]  Jiawei Shen,et al.  Conformational Mobility of GOx Coenzyme Complex on Single-Wall Carbon Nanotubes , 2008, Sensors.

[2]  Huaiguo Xue,et al.  Biopolymer-clay nanoparticles composite system (Chitosan-laponite) for electrochemical sensing based on glucose oxidase , 2008 .

[3]  Hongyuan Chen,et al.  Direct electrochemistry and reagentless biosensing of glucose oxidase immobilized on chitosan wrapped single-walled carbon nanotubes. , 2008, Talanta.

[4]  K. Shiu,et al.  Direct Electrochemistry of Glucose Oxidase at Carbon Nanotube-gold Colloid Modified Electrode with Poly(diallyldimethylammonium chloride) Coating , 2008 .

[5]  L. Nie,et al.  Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode. , 2008, Biosensors & bioelectronics.

[6]  Kateryna Artyushkova,et al.  Entrapment of enzymes and carbon nanotubes in biologically synthesized silica: glucose oxidase-catalyzed direct electron transfer. , 2008, Small.

[7]  K. Jiao,et al.  Unadulterated Glucose Biosensor Based on Direct Electron Transfer of Glucose Oxidase Encapsulated Chitosan Modified Glassy Carbon Electrode , 2008 .

[8]  Yan Qiao,et al.  New Nanostructured TiO2 for Direct Electrochemistry and Glucose Sensor Applications , 2008 .

[9]  H. Cummins Liquid, glass, gel: The phases of colloidal Laponite , 2007 .

[10]  M. Feng,et al.  Layer-by-layer fabrication and direct electrochemistry of glucose oxidase on single wall carbon nanotubes. , 2007, Biosensors & bioelectronics.

[11]  Yunhua Wu,et al.  Direct electrochemistry of glucose oxidase in a colloid Au-dihexadecylphosphate composite film and its application to develop a glucose biosensor. , 2007, Bioelectrochemistry.

[12]  Hongyun Liu,et al.  Study on Direct Electrochemistry of Glucose Oxidase Stabilized by Cross-Linking and Immobilized in Silica Nanoparticle Films , 2007 .

[13]  Huangxian Ju,et al.  Conductive Mesocellular Silica–Carbon Nanocomposite Foams for Immobilization, Direct Electrochemistry, and Biosensing of Proteins , 2007 .

[14]  S. Cosnier,et al.  Amperometric phenol biosensor based on laponite clay-chitosan nanocomposite matrix. , 2007, Biosensors & bioelectronics.

[15]  S. Cosnier,et al.  Entrapment of enzyme within organic and inorganic materials for biosensor applications : Comparative study , 2006 .

[16]  Yinxi Huang,et al.  An electrochemical investigation of glucose oxidase at a CdS nanoparticles modified electrode. , 2005, Biosensors & bioelectronics.

[17]  C. Derby,et al.  Cloning, characterization and expression of escapin, a broadly antimicrobial FAD-containing l-amino acid oxidase from ink of the sea hare Aplysia californica , 2005, Journal of Experimental Biology.

[18]  D. Peričin,et al.  Glucose oxidase from Aspergillus niger: the mechanism of action with molecular oxygen, quinones, and one-electron acceptors. , 2005, The international journal of biochemistry & cell biology.

[19]  Huangxian Ju,et al.  Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode. , 2003, Biosensors & bioelectronics.

[20]  S. Cosnier,et al.  A New Polyphenol Oxidase Biosensor Mediated by Azure B in Laponite Clay Matrix , 2003 .

[21]  B. Minaev,et al.  A theoretical study of the dioxygen activation by glucose oxidase and copper amine oxidase. , 2003, Biochimica et biophysica acta.

[22]  S. Cosnier,et al.  A composite poly azure B /clay /enzyme sensor for the mediated electrochemical determination of phenols , 2002 .

[23]  S. Cosnier,et al.  Trienzymatic biosensor for the determination of inorganic phosphate , 2001 .

[24]  S. Yariv,et al.  A thermo-FTIR-spectroscopy analysis of Al-pillared smectites differing in source of charge, in KBr disks , 1999 .

[25]  C. Martelet,et al.  A laponite clay-poly(pyrrole–pyridinium) matrix for the fabrication of conductimetric microbiosensors , 1999 .

[26]  P. Bianco,et al.  Ion‐Exchange Voltammetry of Cationic Species at Membrane Clay‐Modified Electrodes , 1998 .

[27]  S. Cosnier,et al.  A new strategy for the construction of amperometric dehydrogenase electrodes based on laponite gel-methylene blue polymer as the host matrix , 1996 .

[28]  E. Laviron General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems , 1979 .

[29]  G. Lagaly,et al.  H. van Olphen: An Introduction to Clay Colloid Chemistry, 2nd Ed. John Wiley & Sons, New York, London, Sydney, Toronto 1977. 318 Seiten, Preis: £ 15.–, $ 25.– , 1978 .

[30]  E. Laviron,et al.  Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry , 1974 .

[31]  Huaiyong Zhu,et al.  Photocatalysts prepared from layered clays and titanium hydrate for degradation of organic pollutants in water , 2005 .

[32]  D. Schomburg,et al.  The 3D structure of glucose oxidase from Aspergillus niger. Implications for the use of GOD as a biosensor enzyme. , 1993, Biosensors & bioelectronics.

[33]  H. Olphen An Introduction to Clay Colloid Chemistry , 1977 .