Unified approach to Miura, Bäcklund and Darboux Transformations for Nonlinear Partial Differential Equations

This paper is an attempt to present and discuss at some length the Singular Mani- fold Method. This Method is based upon the Painleve Property systematically used as a tool for obtaining clear cut answers to almost all the questions related with Nonlinear Partial Differential Equations: Lax pairs, Miura, Backlund or Darboux Transformations as well as τ -functions, in a unified way. Besides to present the ba- sics of the Method we exemplify this approach by applying it to four equations in (1 + 1)-dimensions. Two of them are related with the other two through Miura trans- formations that are also derived by using the Singular Manifold Method.

[1]  Andrew Pickering,et al.  Factorization of the 'classical Boussinesq' system , 1994 .

[2]  P. R. Gordoa,et al.  Modified Singular Manifold Expansion: Application to the Boussinesq and Mikhailov-Shabat Systems , 1993 .

[3]  P. Drazin SOLITONS, NONLINEAR EVOLUTION EQUATIONS AND INVERSE SCATTERING (London Mathematical Society Lecture Note Series 149) , 1993 .

[4]  R. Hirota Classical Boussinesq Equation is a Reduction of the Modified KP Equation , 1985 .

[5]  I. Loris,et al.  Bilinearization of the non-local Boussinesq equation , 1995 .

[6]  R. Conte,et al.  The two-singular-manifold method: I. Modified Korteweg-de Vries and sine-Gordon equations , 1994 .

[7]  S. Ulam,et al.  Studies of nonlinear problems i , 1955 .

[8]  R. Hirota,et al.  Nonlinear Evolution Equations Generated from the Bäcklund Transformation for the Boussinesq Equation , 1977 .

[9]  D. J. Kaup,et al.  A Higher-Order Water-Wave Equation and the Method for Solving It , 1975 .

[10]  J. Weiss THE PAINLEVE PROPERTY FOR PARTIAL DIFFERENTIAL EQUATIONS. II. BACKLUND TRANSFORMATION, LAX PAIRS, AND THE SCHWARZIAN DERIVATIVE , 1983 .

[11]  M. Tabor Modern dynamics and classical analysis , 1984, Nature.

[12]  B. Konopelchenko,et al.  On the structure and properties of the singularity manifold equations of the KP hierarchy , 1991 .

[13]  M. Tabor,et al.  Painlevé expansions for nonintegrable evolution equations , 1989 .

[14]  N. V. Ustinov,et al.  Third order spectral problems: reductions and Darboux transformations , 1994 .

[15]  M. Ablowitz,et al.  Nonlinear evolution equations and ordinary differential equations of painlevè type , 1978 .

[16]  J. Nimmo,et al.  On the Moutard transformation for integrable partial differential equations , 1991 .

[17]  Ima Program on Nonlinear Waves,et al.  Solitons in Physics, Mathematics, and Nonlinear Optics , 1990 .

[18]  P. Olver,et al.  The Connection between Partial Differential Equations Soluble by Inverse Scattering and Ordinary Differential Equations of Painlevé Type , 1983 .

[19]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[20]  P. G. Estévez,et al.  A wave equation in 2+1: Painleve analysis and solutions , 1995 .

[21]  P. R. Gordoa,et al.  The Singular Manifold Method: Darboux Transformations and Nonclassical Symmetries , 1995 .

[22]  M. Lakshmanan,et al.  Singularity-structure analysis and Hirota's bilinearisation of the Davey-Stewartson equation , 1987 .

[23]  M. Ablowitz,et al.  The Inverse scattering transform fourier analysis for nonlinear problems , 1974 .

[24]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[25]  Johan Springael,et al.  On a direct bilinearization method : Kaup's higher-order water wave equation as a modified nonlocal Boussinesq equation , 1994 .

[26]  P. R. Gordoa,et al.  Nonclassical Symmetries and the Singular Manifold Method: Theory and Six Examples , 1995 .

[27]  J. Collet Sur l'intégration des équations différentielles linéaires à coefficients constants , 1887 .

[28]  Peter A. Clarkson,et al.  The Painlevé‐Kowalevski and Poly‐Painlevé Tests for Integrability , 1992 .

[29]  Sophie Kowalevski,et al.  Sur le probleme de la rotation d'un corps solide autour d'un point fixe , 1889 .

[30]  V. Dotsenko,et al.  Statistical mechanics of training in neural networks , 1994 .

[31]  P. R. Gordoa,et al.  Darboux transformations via Painlevé analysis , 1997 .

[32]  Micheline Musette,et al.  Algorithmic method for deriving Lax pairs from the invariant Painlevé analysis of nonlinear partial differential equations , 1991 .

[33]  A. Newell,et al.  Monodromy- and spectrum-preserving deformations I , 1980 .

[34]  S. Kawamoto Linearization of the Classical Boussinesq and Related Equations , 1984 .

[35]  M. Tabor,et al.  The Painlevé property for partial differential equations , 1983 .

[36]  Darboux theorems and factorization of second- and third-order ordinary differential operators , 1991 .