The effect of cation substitution and non-stoichiometry on the sintering behavior and permeability of M-type barium hexaferrite

[1]  L. Qiao,et al.  Magnetic properties of Co–Ti substituted barium hexaferrite , 2013 .

[2]  D. Lisjak The low-temperature sintering of M-type hexaferrites , 2012 .

[3]  J. Töpfer,et al.  Zn- and Cu-substituted Co2Y hexagonal ferrites: Sintering behavior and permeability , 2012 .

[4]  Ji Zhou,et al.  Low-fired Y-type hexagonal ferrite for hyper frequency applications , 2012, Journal of Advanced Ceramics.

[5]  H. Hsiang,et al.  Glass additive influence on the sintering behavior, microstructure and microwave magnetic properties of Cu–Bi–Zn co-doped Co2Z ferrites , 2011 .

[6]  H. Hsiang,et al.  Crystalline phases and magnetic properties of Cu–Bi–Zn co-doped Co2Z ferrites , 2011 .

[7]  Yong-Jin Kim,et al.  Magnetic and microwave absorbing properties of Ti and Co substituted M-hexaferrites in Ka-band frequencies (26.5 ~ 40 GHz) , 2010 .

[8]  Ji Zhou,et al.  Effect of Mn doping on physical properties of Y-type hexagonal ferrite , 2009 .

[9]  Bo Li,et al.  The effect of Bi substitution on phase formation and low temperature sintering of Y-type hexagonal ferrite , 2008 .

[10]  Ji Zhou,et al.  The physic properties of Bi–Zn codoped Y-type hexagonal ferrite , 2008 .

[11]  L. Kong,et al.  Electrical and magnetic properties of magnesium ferrite ceramics doped with Bi2O3 , 2007 .

[12]  O. V’yunov,et al.  Mössbauer study and magnetic properties of M-type barium hexaferrite doped with Co + Ti and Bi + Ti ions. , 2006, The journal of physical chemistry. B.

[13]  Ji Zhou,et al.  The Effect of Sr Substitution on Phase Formation and Magnetic Properties of Y-type Hexagonal Ferrite , 2005 .

[14]  K. Kitajima,et al.  Low-temperature sintering of Z-type hexagonal ferrite by addition of fluorine containing glass powder , 2005 .

[15]  Ji Zhou,et al.  Electrical properties of non-stoichiometric Y-type hexagonal ferrite , 2004 .

[16]  Á. Gali,et al.  Theoretical study of vacancy diffusion and vacancy-assisted clustering of antisites in SiC , 2003 .

[17]  Ji Zhou,et al.  High-frequency magnetic properties of low-temperature sintered CoTi substituted barium ferrites , 2003 .

[18]  Ji Zhou,et al.  Microstructures and high-frequency magnetic properties of low-temperature sintered Co-Ti substituted barium ferrites , 2003 .

[19]  Ji Zhou,et al.  An investigation of the magnetic properties of Co2Y hexaferrite , 2002 .

[20]  Ji Zhou,et al.  Effect of Copper Substitution on the Dielectric and Magnetic Properties of Low-Temperature-Sintered Z-type Ferrites , 2002 .

[21]  Z. Ji,et al.  Magnetic properties of non-stoichiometric Y-type hexaferrite , 2002 .

[22]  C. Kim,et al.  Mössbauer and magnetic properties of Co–Ti substituted barium hexaferrite nanoparticles , 2002 .

[23]  M. Gregori,et al.  Mössbauer spectroscopic determination of magnetic moments of Fe3+ and Co2+ in substituted barium hexaferrite, Ba(Co,Ti)xFe(12−2x)O19 , 2000 .

[24]  Tatsuya Nakamura,et al.  Snoek’s limit in high-frequency permeability of polycrystalline Ni–Zn, Mg–Zn, and Ni–Zn–Cu spinel ferrites , 2000 .

[25]  K. Hatakeyama,et al.  Frequency dispersion and temperature variation of complex permeability of Ni‐Zn ferrite composite materials , 1995 .

[26]  Y. Hong,et al.  Synthesis and characterization of modified barium ferrite particles , 1987 .