Existence and convergence of the expansion in the asymptotic theory of elastic thin plates
暂无分享,去创建一个
[1] Philippe G. Ciarlet,et al. Two-dimensional approximations of three-dimensional eigenvalue problems in plate theory , 1981 .
[2] J. Paumier. Existence theorems for nonlinear elastic plates with periodic boundary conditions , 1990 .
[3] Philippe G. Ciarlet,et al. A justification of the von Kármán equations , 1980 .
[4] K. O. Friedrichs,et al. A boundary-layer theory for elastic plates , 1961 .
[5] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .
[6] Ph. Destuynder,et al. Comparaison entre les modèles tridimensionnels et bidimensionnels de plaques en élasticité , 1981 .
[7] A. Raoult,et al. Construction d'un modèle d'évolution de plaques avec terme d'inerte de rotation , 1985 .
[8] A. L. Gol'denveizer. Derivation of an approximate theory of bending of a plate by the method of asymptotic integration of the equations of the theory of elasticity , 1962 .
[9] P. G. Ciarlet,et al. A justification of the Marguerre-von Kármán equations , 1986 .
[10] Philippe G. Ciarlet,et al. JUSTIFICATION OF THE TWO-DIMENSIONAL LINEAR PLATE MODEL. , 1979 .
[11] J. Lions. Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal , 1973 .