A fully spectral methodology for magnetohydrodynamic calculations in a whole sphere
暂无分享,去创建一个
[1] An adaptive approach to stepsize control in ODE solvers , 1993 .
[2] W. Verkley,et al. A Spectral Model for Two-Dimensional Incompressible Fluid Flow in a Circular Basin , 1997 .
[3] Kjell Gustafsson,et al. Control Strategies for the Iterative Solution of Nonlinear Equations in ODE Solvers , 1997, SIAM J. Sci. Comput..
[4] D. Stevenson. Planetary magnetic fields , 2003 .
[5] Yufeng Lin,et al. Shear-driven parametric instability in a precessing sphere , 2015, 1710.07698.
[6] Keith Julien,et al. Efficient multi-dimensional solution of PDEs using Chebyshev spectral methods , 2009, J. Comput. Phys..
[7] A. Hofmann,et al. Geodynamo, Solar Wind, and Magnetopause 3.4 to 3.45 Billion Years Ago , 2010, Science.
[8] Masaru Kono,et al. A numerical dynamo benchmark , 2001 .
[9] W. Gautschi. Computational Aspects of Three-Term Recurrence Relations , 1967 .
[10] Gene H. Golub,et al. Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.
[11] Ulrich Hansen,et al. An efficient spectral method for the simulation of dynamos in Cartesian geometry and its implementation on massively parallel computers , 2008 .
[12] T. Phillips,et al. Influence matrix technique for the numerical spectral simulation of viscous incompressible flows , 1991 .
[13] Ulrich R. Christensen,et al. Numerical modelling of the geodynamo: a systematic parameter study , 1999 .
[14] Philip S. Marcus,et al. A Spectral Method for Polar Coordinates , 1995 .
[15] J. Guermond,et al. Full sphere hydrodynamic and dynamo benchmarks , 2014, Geophysical Journal International.
[16] Rainer Hollerbach. The Range of Timescales on Which the Geodynamo Operates , 2013 .
[17] Nathanaël Schaeffer,et al. Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations , 2012, ArXiv.
[18] Philip W. Livermore,et al. Spectral radial basis functions for full sphere computations , 2007, J. Comput. Phys..
[19] William E. Smith,et al. Product-Integration Rules Based on the Zeros of Jacobi Polynomials , 1980 .
[20] J. Bloxham,et al. On the dynamical implications of models of Bs in the Earth’s core , 1999 .
[21] P. Davidson. An Introduction to Magnetohydrodynamics , 2001 .
[22] Andrew Jackson,et al. An optimal Galerkin scheme to solve the kinematic dynamo eigenvalue problem in a full sphere , 2010, J. Comput. Phys..
[23] S. Chandrasekhar. Hydrodynamic and Hydromagnetic Stability , 1961 .
[24] Cheng-Chin Wu,et al. On the modified Taylor constraint , 2014 .
[25] Steven J. Ruuth,et al. Implicit-explicit methods for time-dependent partial differential equations , 1995 .
[26] G. Hall,et al. Equilibrium states for predictor-corrector methods , 1998 .
[27] Jean-Luc Guermond,et al. A spherical shell numerical dynamo benchmark with pseudo-vacuum magnetic boundary conditions , 2014 .
[28] G. Glatzmaier,et al. A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle , 1995 .
[29] G. Hall,et al. Alternative stepsize strategies for Adams predictor-corrector codes , 2000 .
[30] C. Nore,et al. Parity-breaking flows in precessing spherical containers. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.
[31] Paul H. Roberts,et al. Equations governing convection in earth's core and the geodynamo , 1995 .
[32] C. Lanczos,et al. Trigonometric Interpolation of Empirical and Analytical Functions , 1938 .
[33] Yoshimori Honkura,et al. Scale variability in convection-driven MHD dynamos at low Ekman number , 2008 .
[34] Catherine Constable,et al. Foundations of geomagnetism , 1996 .