A fully spectral methodology for magnetohydrodynamic calculations in a whole sphere

Abstract We present a fully spectral methodology for magnetohydrodynamic (MHD) calculations in a whole sphere. The use of Jones–Worland polynomials for the radial expansion guarantees that the physical variables remain infinitely differentiable throughout the spherical volume. Furthermore, we present a mathematically motivated and systematic strategy to relax the very stringent time step constraint that is present close to the origin when a spherical harmonic expansion is used for the angular direction. The new constraint allows for significant savings even on relatively simple solutions as demonstrated on the so-called full sphere benchmark, a specific problem with a very accurately-known solution. The numerical implementation uses a 2D data decomposition which allows it to scale to thousands of cores on present-day high performance computing systems. In addition to validation results, we also present three new whole sphere dynamo solutions that present a relatively simple structure.

[1]  An adaptive approach to stepsize control in ODE solvers , 1993 .

[2]  W. Verkley,et al.  A Spectral Model for Two-Dimensional Incompressible Fluid Flow in a Circular Basin , 1997 .

[3]  Kjell Gustafsson,et al.  Control Strategies for the Iterative Solution of Nonlinear Equations in ODE Solvers , 1997, SIAM J. Sci. Comput..

[4]  D. Stevenson Planetary magnetic fields , 2003 .

[5]  Yufeng Lin,et al.  Shear-driven parametric instability in a precessing sphere , 2015, 1710.07698.

[6]  Keith Julien,et al.  Efficient multi-dimensional solution of PDEs using Chebyshev spectral methods , 2009, J. Comput. Phys..

[7]  A. Hofmann,et al.  Geodynamo, Solar Wind, and Magnetopause 3.4 to 3.45 Billion Years Ago , 2010, Science.

[8]  Masaru Kono,et al.  A numerical dynamo benchmark , 2001 .

[9]  W. Gautschi Computational Aspects of Three-Term Recurrence Relations , 1967 .

[10]  Gene H. Golub,et al.  Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.

[11]  Ulrich Hansen,et al.  An efficient spectral method for the simulation of dynamos in Cartesian geometry and its implementation on massively parallel computers , 2008 .

[12]  T. Phillips,et al.  Influence matrix technique for the numerical spectral simulation of viscous incompressible flows , 1991 .

[13]  Ulrich R. Christensen,et al.  Numerical modelling of the geodynamo: a systematic parameter study , 1999 .

[14]  Philip S. Marcus,et al.  A Spectral Method for Polar Coordinates , 1995 .

[15]  J. Guermond,et al.  Full sphere hydrodynamic and dynamo benchmarks , 2014, Geophysical Journal International.

[16]  Rainer Hollerbach The Range of Timescales on Which the Geodynamo Operates , 2013 .

[17]  Nathanaël Schaeffer,et al.  Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations , 2012, ArXiv.

[18]  Philip W. Livermore,et al.  Spectral radial basis functions for full sphere computations , 2007, J. Comput. Phys..

[19]  William E. Smith,et al.  Product-Integration Rules Based on the Zeros of Jacobi Polynomials , 1980 .

[20]  J. Bloxham,et al.  On the dynamical implications of models of Bs in the Earth’s core , 1999 .

[21]  P. Davidson An Introduction to Magnetohydrodynamics , 2001 .

[22]  Andrew Jackson,et al.  An optimal Galerkin scheme to solve the kinematic dynamo eigenvalue problem in a full sphere , 2010, J. Comput. Phys..

[23]  S. Chandrasekhar Hydrodynamic and Hydromagnetic Stability , 1961 .

[24]  Cheng-Chin Wu,et al.  On the modified Taylor constraint , 2014 .

[25]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[26]  G. Hall,et al.  Equilibrium states for predictor-corrector methods , 1998 .

[27]  Jean-Luc Guermond,et al.  A spherical shell numerical dynamo benchmark with pseudo-vacuum magnetic boundary conditions , 2014 .

[28]  G. Glatzmaier,et al.  A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle , 1995 .

[29]  G. Hall,et al.  Alternative stepsize strategies for Adams predictor-corrector codes , 2000 .

[30]  C. Nore,et al.  Parity-breaking flows in precessing spherical containers. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Paul H. Roberts,et al.  Equations governing convection in earth's core and the geodynamo , 1995 .

[32]  C. Lanczos,et al.  Trigonometric Interpolation of Empirical and Analytical Functions , 1938 .

[33]  Yoshimori Honkura,et al.  Scale variability in convection-driven MHD dynamos at low Ekman number , 2008 .

[34]  Catherine Constable,et al.  Foundations of geomagnetism , 1996 .