Randomized algorithms for the low-rank approximation of matrices
暂无分享,去创建一个
Per-Gunnar Martinsson | Mark Tygert | Edo Liberty | Vladimir Rokhlin | Franco Woolfe | V. Rokhlin | M. Tygert | Franco Woolfe | Edo Liberty | P. Martinsson
[1] A. Booth. Numerical Methods , 1957, Nature.
[2] Åke Björck,et al. Numerical Methods , 2021, Markov Renewal and Piecewise Deterministic Processes.
[3] J. Dixon. Estimating Extremal Eigenvalues and Condition Numbers of Matrices , 1983 .
[4] Henryk Wozniakowski,et al. Estimating the Largest Eigenvalue by the Power and Lanczos Algorithms with a Random Start , 1992, SIAM J. Matrix Anal. Appl..
[5] C. Sidney Burrus,et al. Efficient computation of the DFT with only a subset of input or output points , 1993, IEEE Trans. Signal Process..
[6] Ming Gu,et al. Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..
[7] Eugene E. Tyrtyshnikov,et al. Incomplete Cross Approximation in the Mosaic-Skeleton Method , 2000, Computing.
[8] V. Olshevsky. Structured Matrices in Mathematics, Computer Science, and Engineering II , 2001 .
[9] Per-Gunnar Martinsson,et al. On the Compression of Low Rank Matrices , 2005, SIAM J. Sci. Comput..
[10] V. Rokhlin,et al. A randomized algorithm for the approximation of matrices , 2006 .
[11] Jon Kleinberg,et al. Proceedings of the thirty-eighth annual ACM symposium on Theory of computing , 2006, STOC 2006.
[12] V. Rokhlin,et al. A fast randomized algorithm for the approximation of matrices ✩ , 2007 .