Actual morphing: a physics-based approach to blending

When two topologically identical shapes are blended, various possible transformation paths exist from the source shape to the target shape. Which one is the most plausible? Here we propose that the transformation process should obey a quasi-physical law. This paper combines morphing with deformation theory from continuum mechanics. By using strain energy, which reflects the magnitude of deformation, as an objective function, we convert the problem of path interpolation into an unconstrained optimization problem. To reduce the number of variables in the optimization we adopt shape functions, as used in the finite element method (FEM). A point-to-point correspondence between the source and target shapes is naturally established using these polynomial functions plus a distance map.

[1]  James F. O'Brien,et al.  Shape transformation using variational implicit functions , 1999, SIGGRAPH Courses.

[2]  David P. Dobkin,et al.  Multiresolution mesh morphing , 1999, SIGGRAPH.

[3]  D. A. Duce,et al.  Visualization in Scientific Computing , 1994, Focus on Computer Graphics.

[4]  Y. Talpaert Tensor Analysis and Continuum Mechanics , 2003 .

[5]  井上 達雄 Tensor Analysis and Continuum Mechanics, Wilhelm Flugge 著, B5版変形, 208頁, 5 520円, 1972年, Springer-Verlag , 1972 .

[6]  Daniel Cohen-Or,et al.  Three-dimensional distance field metamorphosis , 1998, TOGS.

[7]  J. Z. Zhu,et al.  The finite element method , 1977 .

[8]  Marc Levoy,et al.  Feature-based volume metamorphosis , 1995, SIGGRAPH.

[9]  W SederbergThomas,et al.  A physically based approach to 2D shape blending , 1992 .

[10]  John F. Hughes,et al.  Scheduled Fourier volume morphing , 1992, SIGGRAPH.

[11]  H. Parisch A continuum‐based shell theory for non‐linear applications , 1995 .

[12]  Peisheng Gao,et al.  2-D shape blending: an intrinsic solution to the vertex path problem , 1993, SIGGRAPH.

[13]  David E. Breen,et al.  A level-set approach for the metamorphosis of solid models , 1999, SIGGRAPH '99.

[14]  Dimitris N. Metaxas,et al.  Dynamic 3D models with local and global deformations: deformable superquadrics , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[15]  David E. Breen,et al.  A Level-Set Approach for the Metamorphosis of Solid Models , 2001, IEEE Trans. Vis. Comput. Graph..

[16]  Demetri Ter Dynamic 3D Models with Local and Global Deformations: Deformable Superquadrics , 1990 .

[17]  Wayne E. Carlson,et al.  Shape transformation for polyhedral objects , 1992, SIGGRAPH.

[18]  Sung Yong Shin,et al.  Image metamorphosis using snakes and free-form deformations , 1995, SIGGRAPH.

[19]  B. H. McCormick,et al.  Visualization in scientific computing , 1995 .

[20]  Thomas W. Sederberg,et al.  A physically based approach to 2–D shape blending , 1992, SIGGRAPH.

[21]  W. Flügge,et al.  Tensor Analysis and Continuum Mechanics , 1972 .

[22]  Dimitris N. Metaxas,et al.  Dynamic 3D Models with Local and Global Deformations: Deformable Superquadrics , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Andrew H. Gee,et al.  Volume-based three-dimensional metamorphosis using sphere-guided region correspondence , 2001, The Visual Computer.

[24]  Hiromasa Suzuki,et al.  Metamorphosis of Arbitrary Triangular Meshes , 2000, IEEE Computer Graphics and Applications.

[25]  Y. C. Fung,et al.  Foundation of Solid Mechanics , 1966 .

[26]  Peter Schröder,et al.  Consistent mesh parameterizations , 2001, SIGGRAPH.

[27]  Marc Alexa,et al.  As-rigid-as-possible shape interpolation , 2000, SIGGRAPH.

[28]  Thaddeus Beier,et al.  Feature-based image metamorphosis , 1992, SIGGRAPH.