Sparse Bayesian DOA Estimation Using Hierarchical Synthesis Lasso Priors for Off-Grid Signals

Within the conventional sparse Bayesian learning (SBL) framework, only Gaussian scale mixtures have been adopted to model sparsity-inducing priors that guarantee the exact inverse recovery. In light of the relative scarcity of formal SBL tools in enforcing a proper sparsity profile of signal vectors, we explore the use of hierarchical synthesis lasso (HSL) priors for representing the same small subset of features among multiple responses. We outline a viable approximation to this particular choice of sparse prior, leading to tractable marginalization over all weights and hyperparameters. We then discuss how the statistical variables of the hierarchical Bayesian model can be estimated via an adaptive updating formula, and include a refined one dimensional searching procedure to extraordinarily improve the direction of arrival (DOA) estimation performance when take the off-grid DOAs into account. Using these modifications, we show that exploiting HSL priors are very helpful in encouraging sparseness. Numerical simulations also verify the superiority of the proposal in terms of convergence speed and root mean squared estimation error, as compared to the traditional and more recent sparse Bayesian algorithms.

[1]  Petre Stoica,et al.  MUSIC, maximum likelihood, and Cramer-Rao bound , 1989, IEEE Transactions on Acoustics, Speech, and Signal Processing.

[2]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevan e Ve tor Ma hine , 2001 .

[3]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[4]  Lihua Xie,et al.  On Gridless Sparse Methods for Line Spectral Estimation From Complete and Incomplete Data , 2014, IEEE Transactions on Signal Processing.

[5]  Jun Li,et al.  An efficient off-grid DOA estimation approach for nested array signal processing by using sparse Bayesian learning strategies , 2016, Signal Process..

[6]  Cishen Zhang,et al.  A Discretization-Free Sparse and Parametric Approach for Linear Array Signal Processing , 2013, IEEE Transactions on Signal Processing.

[7]  Arye Nehorai,et al.  Joint Sparse Recovery Method for Compressed Sensing With Structured Dictionary Mismatches , 2013, IEEE Transactions on Signal Processing.

[8]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[9]  Hongbo Zhu,et al.  Efficient direction of arrival estimation based on sparse covariance fitting criterion with modeling mismatch , 2017, Signal Process..

[10]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[11]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[12]  D.G. Tzikas,et al.  The variational approximation for Bayesian inference , 2008, IEEE Signal Processing Magazine.

[13]  Yonina C. Eldar,et al.  Compressed Sensing with Coherent and Redundant Dictionaries , 2010, ArXiv.

[14]  Cishen Zhang,et al.  Off-Grid Direction of Arrival Estimation Using Sparse Bayesian Inference , 2011, IEEE Transactions on Signal Processing.

[15]  T. Engin Tuncer,et al.  Classical and Modern Direction-of-Arrival Estimation , 2009 .

[16]  J. Capon High-resolution frequency-wavenumber spectrum analysis , 1969 .

[17]  Georgios B. Giannakis,et al.  Sparsity-Cognizant Total Least-Squares for Perturbed Compressive Sampling , 2010, IEEE Transactions on Signal Processing.

[18]  Gongguo Tang,et al.  Near minimax line spectral estimation , 2013, 2013 47th Annual Conference on Information Sciences and Systems (CISS).

[19]  Bhaskar D. Rao,et al.  An Empirical Bayesian Strategy for Solving the Simultaneous Sparse Approximation Problem , 2007, IEEE Transactions on Signal Processing.

[20]  Yuxin Chen,et al.  Robust Spectral Compressed Sensing via Structured Matrix Completion , 2013, IEEE Transactions on Information Theory.

[21]  Jun Fang,et al.  Super-Resolution Compressed Sensing for Line Spectral Estimation: An Iterative Reweighted Approach , 2016, IEEE Transactions on Signal Processing.

[22]  Matthias W. Seeger,et al.  Compressed sensing and Bayesian experimental design , 2008, ICML '08.

[23]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[24]  Petre Stoica,et al.  Sparse Estimation of Spectral Lines: Grid Selection Problems and Their Solutions , 2012, IEEE Transactions on Signal Processing.

[25]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[26]  Emre Ertin,et al.  On the Relation Between Sparse Reconstruction and Parameter Estimation With Model Order Selection , 2010, IEEE Journal of Selected Topics in Signal Processing.

[27]  Jisheng Dai,et al.  Sparse Bayesian learning for off-grid DOA estimation with nested arrays , 2018, Digit. Signal Process..

[28]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[29]  Dmitry M. Malioutov,et al.  A sparse signal reconstruction perspective for source localization with sensor arrays , 2005, IEEE Transactions on Signal Processing.

[30]  Aggelos K. Katsaggelos,et al.  Bayesian Compressive Sensing Using Laplace Priors , 2010, IEEE Transactions on Image Processing.

[31]  Bhaskar D. Rao,et al.  Latent Variable Bayesian Models for Promoting Sparsity , 2011, IEEE Transactions on Information Theory.

[32]  D. Titterington,et al.  Convergence properties of a general algorithm for calculating variational Bayesian estimates for a normal mixture model , 2006 .

[33]  Yiyu Zhou,et al.  An Efficient Maximum Likelihood Method for Direction-of-Arrival Estimation via Sparse Bayesian Learning , 2012, IEEE Transactions on Wireless Communications.

[34]  Mário A. T. Figueiredo Adaptive Sparseness for Supervised Learning , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[36]  Lihua Xie,et al.  Exact Joint Sparse Frequency Recovery via Optimization Methods , 2014, 1405.6585.

[37]  S. Unnikrishna Pillai,et al.  Forward/backward spatial smoothing techniques for coherent signal identification , 1989, IEEE Trans. Acoust. Speech Signal Process..

[38]  Bhaskar D. Rao,et al.  Sparse Bayesian learning for basis selection , 2004, IEEE Transactions on Signal Processing.

[39]  Bhaskar D. Rao,et al.  Perspectives on Sparse Bayesian Learning , 2003, NIPS.

[40]  Jian Li,et al.  Weighted SPICE: A unifying approach for hyperparameter-free sparse estimation , 2014, Digit. Signal Process..

[41]  Terence Tao,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[42]  Lawrence Carin,et al.  Exploiting Structure in Wavelet-Based Bayesian Compressive Sensing , 2009, IEEE Transactions on Signal Processing.

[43]  Soontorn Oraintara,et al.  Complex Gaussian Scale Mixtures of Complex Wavelet Coefficients , 2010, IEEE Transactions on Signal Processing.

[44]  Reiner S. Thomä,et al.  On the estimation of grid offsets in CS-based direction-of-arrival estimation , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[45]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[46]  P. P. Vaidyanathan,et al.  A Grid-Less Approach to Underdetermined Direction of Arrival Estimation Via Low Rank Matrix Denoising , 2014, IEEE Signal Processing Letters.

[47]  Lawrence Carin,et al.  Bayesian Compressive Sensing , 2008, IEEE Transactions on Signal Processing.