Improved photo – Hydrogen production by transposon mutant of Rhodobacter capsulatus with reduced pigment

[1]  Michael Seibert,et al.  A truncated antenna mutant of Chlamydomonas reinhardtii can produce more hydrogen than the parental strain , 2011 .

[2]  A. Tsygankov,et al.  Hydrogen production by recombinant strains of Rhodobacter sphaeroides using a modified photosynthetic apparatus , 2010, Applied Biochemistry and Microbiology.

[3]  Xueqing Wang,et al.  A comparison of hydrogen production among three photosynthetic bacterial strains , 2010 .

[4]  C. Harwood,et al.  Progress toward a biomimetic leaf: 4,000 h of hydrogen production by coating‐stabilized nongrowing photosynthetic Rhodopseudomonas palustris , 2010, Biotechnology progress.

[5]  Hui Wang,et al.  Biohydrogen production from cornstalk wastes by anaerobic fermentation with activated sludge , 2010 .

[6]  Fei Liu,et al.  Enhanced bio-hydrogen production from corncob by a two-step process: dark- and photo-fermentation. , 2010, Bioresource technology.

[7]  Liejin Guo,et al.  Effect of operation parameters on anaerobic fermentation using cow dung as a source of microorganisms , 2010 .

[8]  Liejin Guo,et al.  Solar hydrogen production and its development in China , 2009 .

[9]  Jianlong Wang,et al.  Kinetic models for fermentative hydrogen production: A review , 2009 .

[10]  Hong-Wei Hou,et al.  Enhanced cellulose-hydrogen production from corn stalk by lesser panda manure , 2008 .

[11]  Debabrata Das,et al.  Biohydrogen as a renewable energy resource—Prospects and potentials , 2008 .

[12]  J. Beatty,et al.  The PufX protein of Rhodobacter capsulatus affects the properties of bacteriochlorophyll a and carotenoid pigments of light-harvesting complex 1. , 2005, Archives of biochemistry and biophysics.

[13]  T. Masuda,et al.  Truncated chlorophyll antenna size of the photosystems—a practical method to improve microalgal productivity and hydrogen production in mass culture , 2002 .

[14]  A. Guss,et al.  Genetic analysis of pigment biosynthesis in Xanthobacter autotrophicus Py2 using a new, highly efficient transposon mutagenesis system that is functional in a wide variety of bacteria , 2002, Archives of Microbiology.

[15]  J. Benemann,et al.  Maximizing photosynthetic efficiencies and hydrogen production in microalga cultures , 2001 .

[16]  Yasuo Asada,et al.  Biotechnological hydrogen production" research for efficient light energy conversion , 1999 .

[17]  Y. Asada,et al.  Light penetration into cell suspensions of photosynthetic bacteria and relation to hydrogen production , 1995 .

[18]  P. McGlynn,et al.  A putative anaerobic coproporphyrinogen III oxidase in Rhodobacter sphaeroides. II. Analysis of a region of the genome encoding hemF and the puc operon , 1992, Molecular microbiology.

[19]  N. Gad’on,et al.  Analysis of the Rhodobacter capsulatus puc operon: the pucC gene plays a central role in the regulation of LHII (B800‐850 complex) expression. , 1991, The EMBO journal.

[20]  N. Gad’on,et al.  Isolation and characterization of a light harvesting complex II lacking the γ-polypeptide from Rhodobacter capsulatus , 1990 .

[21]  F. Daldal,et al.  Cytochrome c(2) is not essential for photosynthetic growth of Rhodopseudomonas capsulata. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[22]  H. Yen,et al.  Growth of Rhodopseudomonas capsulata under anaerobic dark conditions with dimethyl sulfoxide. , 1977, Archives of biochemistry and biophysics.

[23]  R. Clayton SPECTROSCOPIC ANALYSIS OF BACTERIOCHLOROPHYLLS IN VITRO AND IN VIVO * , 1966 .

[24]  W R SISTROM,et al.  A requirement for sodium in the growth of Rhodopseudomonas spheroides. , 1960, Journal of general microbiology.