Elastic modulus and surface tension of a polyurethane rubber in nanometer thick films

Abstract Estane is a polyurethane with thermodynamically incompatible hard and soft segments and behaves like a thermoplastic elastomer. In the present work the mechanical properties of Estane at the nano- and macro-scales have been characterized. The macroscopic viscoelastic properties were found to follow time–temperature superposition. Also we used a nano bubble inflation method to obtain the compliance of the Estane ultra thin films over thicknesses ranging from 220 nm to 22 nm. The results have been analyzed using both a direct stress-strain analysis and an energy balance method to separate the rubbery plateau regime modulus and the surface tension of the ultra thin films. It is found that the rubbery regime modulus stiffens significantly as thickness decreases, while the surface tension is independent of film thickness. The rubbery stiffening dependence on film thickness is found to be consistent with a new analysis that suggests that it is related to the shape of the macroscopic segmental relaxation.

[1]  D. Plazek The Temperature Dependence of the Viscoelastic Behavior of Poly(vinyl acetate) , 1980 .

[2]  C. Hawker,et al.  Effect of Interfacial Interactions on the Glass Transition of Polymer Thin Films , 2001 .

[3]  G. McKenna,et al.  Rheological Measurements of the Thermoviscoelastic Response of Ultrathin Polymer Films , 2005, Science.

[4]  Richard A. L. Jones,et al.  Glass Transition Behavior in Ultra‐Thin Polystyrene Films , 1995 .

[5]  M. Mehrabzadeh,et al.  Impact modification of polyacetal by thermoplastic elastomer polyurethane , 2002 .

[6]  Keewook Paeng,et al.  Molecular Motion in Free-Standing Thin Films of Poly(methyl methacrylate), Poly(4-tert-butylstyrene), Poly(α-methylstyrene), and Poly(2-vinylpyridine) , 2011 .

[7]  Igor Emri,et al.  Generating line spectra from experimental responses. Part I: Relaxation modulus and creep compliance , 1993 .

[8]  S. A. Hutcheson,et al.  Nanosphere embedding into polymer surfaces: a viscoelastic contact mechanics analysis. , 2005, Physical review letters.

[9]  J. Ferry Viscoelastic properties of polymers , 1961 .

[10]  Christopher J. Ellison,et al.  Sensing the glass transition in thin and ultrathin polymer films via fluorescence probes and labels , 2002 .

[11]  A. Boresi,et al.  Elasticity in engineering mechanics , 1974 .

[12]  S. A. Hutcheson,et al.  Creep behavior of ultra-thin polymer films , 2008 .

[13]  N. Tschoegl,et al.  Generating line spectra from experimental responses. Part II: Storage and loss functions , 1993 .

[14]  Yapu Zhao,et al.  The effects of surface tension on the elastic properties of nano structures , 2010 .

[15]  Christopher J. Ellison,et al.  Confinement and processing effects on glass transition temperature and physical aging in ultrathin polymer films: Novel fluorescence measurements , 2002, The European physical journal. E, Soft matter.

[16]  Bernard Nysten,et al.  Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy , 2004 .

[17]  B. Wunderlich,et al.  Study of Microphase Separation in Block Copolymers of Styrene and α-Methylstyrene in the Glass Transition Region Using Quantitative Thermal Analysis , 1980 .

[18]  G. McKenna,et al.  Novel nanobubble inflation method for determining the viscoelastic properties of ultrathin polymer films. , 2007, The Review of scientific instruments.

[19]  M. Alcoutlabi,et al.  Effects of confinement on material behaviour at the nanometre size scale , 2005 .

[20]  J. Zhang,et al.  Effects of confinement on the glass transition temperature of molecular liquids , 1992 .

[21]  J. Dutcher,et al.  Mobility on Dierent Length Scales in Thin Polymer Films , 2005 .

[22]  J. C. Tucker,et al.  Dependence of the Fictive Temperature of Glass on Cooling Rate , 1976 .

[23]  Joseph L. Keddie,et al.  Interface and surface effects on the glass-transition temperature in thin polymer films , 1994 .

[24]  O. Borodin,et al.  A Quantum-Chemistry-Based Potential for a Poly(ester urethane) , 2003 .

[25]  Christopher J. Ellison,et al.  The distribution of glass-transition temperatures in nanoscopically confined glass formers , 2003, Nature materials.

[26]  K. Ngai,et al.  Viscoelasticity of nanobubble‐inflated ultrathin polymer films: Justification by the coupling model , 2013 .

[27]  Stuart L. Cooper,et al.  Properties of linear elastomeric polyurethanes , 1966 .

[28]  G. McKenna Status of our understanding of dynamics in confinement: Perspectives from Confit 2003 , 2003, The European physical journal. E, Soft matter.

[29]  Soyoung Kim,et al.  Effect of nanoscale confinement on the glass transition temperature of free‐standing polymer films: Novel, self‐referencing fluorescence method , 2008 .

[30]  D. Bluemke,et al.  Annealing-induced morphological changes in segmented elastomers , 1981 .

[31]  G. McKenna,et al.  Exceptional Property Changes in Ultrathin Films of Polycarbonate: Glass Temperature, Rubbery Stiffening, and Flow , 2012 .

[32]  G. McKenna,et al.  Dramatic stiffening of ultrathin polymer films in the rubbery regime , 2006, The European physical journal. E, Soft matter.

[33]  J. Forrest,et al.  Direct imaging of nanoparticle embedding to probe viscoelasticity of polymer surfaces. , 2003, Physical review letters.

[34]  Y. S. Zhang,et al.  Size dependence of Young's modulus in ZnO nanowires. , 2006, Physical review letters.

[35]  Shanhong Xu,et al.  Unusual elastic behavior of ultrathin polymer films: Confinement-induced/molecular stiffening and surface tension effects , 2010 .

[36]  K. Dalnoki-Veress,et al.  Molecular weight dependence of reductions in the glass transition temperature of thin, freely standing polymer films. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  S. Krause,et al.  Properties of dimethylsiloxane microphases in phase-separated dimethylsiloxane block copolymers , 1987 .

[38]  L. Abele,et al.  Polyurethane handbook : chemistry, raw materials, processing, application, properties , 1985 .

[39]  Willi Volksen,et al.  A buckling-based metrology for measuring the elastic moduli of polymeric thin films , 2004, Nature materials.

[40]  John Dutcher,et al.  Glass transition and chain mobility in thin polymer films , 2005 .

[41]  L. Willner,et al.  Rheological investigation of polybutadienes having different microstructures over a large temperature range , 1995 .

[42]  J. Forrest,et al.  The properties of free polymer surfaces and their influence on the glass transition temperature of thin polystyrene films , 2004, The European physical journal. E, Soft matter.

[43]  G. McKenna,et al.  The stiffening of ultrathin polymer films in the rubbery regime: The relative contributions of membrane stress and surface tension , 2009 .

[44]  James A. Forrest,et al.  The glass transition in thin polymer films , 2001 .

[45]  S. A. Hutcheson,et al.  The measurement of mechanical properties of glycerol, m-toluidine, and sucrose benzoate under consideration of corrected rheometer compliance: an in-depth study and review. , 2008, The Journal of chemical physics.

[46]  J. E. Adkins,et al.  Large Elastic Deformations , 1971 .

[47]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[48]  C. Jackson,et al.  The glass transition of organic liquids confined to small pores , 1991 .

[49]  J. Forrest,et al.  Free surfaces cause reductions in the glass transition temperature of thin polystyrene films. , 2003, Physical review letters.

[50]  M. Chang,et al.  Mechanical properties of microwave hydrothermally synthesized titanate nanowires , 2008, Nanotechnology.

[51]  C. Stafford,et al.  Elastic modulus of amorphous polymer thin films: relationship to the glass transition temperature. , 2009, ACS nano.

[52]  N. Tschoegl Time Dependence in Material Properties: An Overview , 1997 .

[53]  Joseph L. Keddie,et al.  Size-Dependent Depression of the Glass Transition Temperature in Polymer Films , 1994 .

[54]  N. Tschoegl,et al.  Generating line spectra from experimental responses , 1997 .