Infrared radiation parameterizations in numerical climate models

Abstract Parameterizations for infrared radiation (IR) in clear atmosphere can be made fast and accurate by grouping spectral regions with similar radiative properties, and by separating the low pressure region of the atmosphere from the high pressure region. Various approaches are presented in this study to parameterizing the broadband transmission functions for use in numerical climate models. For water vapor and carbon dioxide (CO2) bands, the transmission functions are parameterized separately for the middle atmosphere (0.01–30 mb) and for the region below. In the middle atmosphere where the dependence of absorption on pressure and temperature is not strong, the diffuse transmission functions are derived from that at a reference pressure and temperature. In the lower stratosphere and the troposphere, the spectra are grouped into band-center regions and band-wing regions. One-parameter scaling is applied to approximate a nonhomogeneous path with an equivalent homogeneous path, and the diffuse transmitt...