Mn3Ag(1-x)Cu(x)N antiperovskite thin films with ultra-low temperature coefficient of resistance

[1]  C. Ouyang,et al.  First-principles study on the structural, electronic, and Li-ion mobility properties of anti-perovskite superionic conductor Li3OCl (1 0 0) surface , 2020 .

[2]  Jing Tang,et al.  Synthesis and Physical Properties of Antiperovskite CuNFe3 Thin Films via Solution Processing for Room Temperature Soft-Magnets , 2020, Coatings.

[3]  Di Zhang,et al.  Microstructural characterization, mechanical properties and thermal expansion of antiperovskite manganese nitride Mn3.1Zn0.5Sn0.4N fabricated by combing vacuum sintering and spark-plasma sintering , 2020 .

[4]  Huimin Yuan,et al.  Engineering Frenkel defects of anti-perovskite solid-state electrolytes and their applications in all-solid-state lithium-ion batteries. , 2020, Chemical communications.

[5]  T. Maiyalagan,et al.  Supercapacitive properties of manganese nitride thin film electrodes prepared by reactive magnetron sputtering: Effect of different electrolytes , 2019, Ceramics International.

[6]  M. Islam,et al.  Elucidating lithium-ion and proton dynamics in anti-perovskite solid electrolytes , 2018 .

[7]  H. A. Bentounes,et al.  Thermoelectric, electronic and structural properties of CuNMn3 cubic antiperovskite , 2018 .

[8]  H. Ju,et al.  Microstructure, mechanical and tribological properties of TiN-Ag films deposited by reactive magnetron sputtering , 2017 .

[9]  R. Hoffmann,et al.  Atomic and Ionic Radii of Elements 1-96. , 2016, Chemistry.

[10]  Z. Cao,et al.  Ternary Mn3NMn1−xAgx compound films of nearly constant electrical resistivity and their magnetic transport behaviour , 2016 .

[11]  F. Vaz,et al.  Study of the electrical behavior of nanostructured Ti–Ag thin films, prepared by Glancing Angle Deposition , 2015 .

[12]  Wang Yu,et al.  Doping Effect of Co at Ag Sites in Antiperovskite Mn3AgN Compounds , 2015 .

[13]  E. Bourhis,et al.  Evolution of the functional properties of titanium–silver thin films for biomedical applications: Influence of in-vacuum annealing , 2015 .

[14]  S. Kotru,et al.  Chemical bonding, optical constants, and electrical resistivity of sputter-deposited gallium oxide thin films , 2014 .

[15]  K. Li,et al.  Structural, electronic properties and stability of AlCMn3 (1 1 1) surfaces by first-principles calculations , 2014 .

[16]  Junkui Ma,et al.  Deposition of Cr–Si–Ni–Mo films at a low sputtering current and performance of heat and humid resistance , 2014 .

[17]  Jiecai Han,et al.  Critical behavior in the antiperovskite Mn3CuN at ferromagnetic to paramagnetic phase transition , 2013 .

[18]  Jiecai Han,et al.  Observation of spin-glass behavior in antiperovskite compound Mn3Cu0.7Ga0.3N , 2013 .

[19]  T. Oe,et al.  Optimization of $\hbox{Mn}_{3}\hbox{Ag}_{1 - x} \hbox{Cu}_{x}\hbox{N}$ Antiperovskite Compound Fabrication for Resistance Standard , 2013, IEEE Transactions on Instrumentation and Measurement.

[20]  Yuping Sun,et al.  Magnetic transition broadening and local lattice distortion in the negative thermal expansion antiperovskite Cu1−xSnxNMn3 , 2013 .

[21]  S. Neogi,et al.  Structural; morphological; optical and magnetic properties of Mn doped ferromagnetic ZnO thin film , 2012, 1210.4698.

[22]  S. Khondaker,et al.  Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates , 2012 .

[23]  Xiaolong Chen,et al.  Near zero temperature coefficient of resistivity in antiperovskite Mn3Ni1-xCuxN , 2011 .

[24]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[25]  Z. R. Yang,et al.  Tunable temperature coefficient of resistivity in C- and Co-doped CuNMn3 , 2011 .

[26]  Jianping Wang,et al.  Structure and properties of ternary manganese nitride Mn3CuNy thin films fabricated by facing target magnetron sputtering , 2011 .

[27]  N. Kaneko,et al.  Extremely low temperature coefficient of resistance in antiperovskite Mn3Ag1−xCuxN , 2011 .

[28]  Lihua Chu,et al.  Investigation of antiperovskite Mn3CuNx film prepared by DC reactive magnetron sputtering , 2010 .

[29]  Fusheng Liu,et al.  Low temperature coefficient of resistivity induced by magnetic transition and lattice contraction in Mn3NiN compound , 2010 .

[30]  Jean-Marie Tarascon,et al.  Structure and electrochemical properties of novel mixed Li(Fe1−xMx)SO4F (M = Co, Ni, Mn) phases fabricated by low temperature ionothermal synthesis , 2010 .

[31]  O.M. Hahtela,et al.  Atomic-Layer-Deposited Alumina $(\hbox{Al}_{2}\hbox{O}_{3})$ Coating on Thin-Film Cryoresistors , 2009, IEEE Transactions on Instrumentation and Measurement.

[32]  Wondong Kim,et al.  Nearly zero temperature coefficient of resistivity in antiperovskite compound CuNMn3 , 2001 .

[33]  Jui-Chang Chuang,et al.  Properties of thin Ta–N films reactively sputtered on Cu/SiO2/Si substrates , 1998 .

[34]  M. Angadi,et al.  Thickness dependence of temperature coefficient of resistance and neel temperature in MnTe films , 1993 .

[35]  D. Fruchart,et al.  Magnetic Studies of the Metallic Perovskite-Type Compounds of Manganese , 1978 .