A three-point formula for numerical quadrature of oscillatory integrals with variable frequency
暂无分享,去创建一个
[1] D. R. Hartree. The evaluation of a diffraction integral , 1954 .
[2] L. Filon. III.—On a Quadrature Formula for Trigonometric Integrals. , 1930 .
[3] David Levin,et al. Procedures for computing one- and two-dimensional integrals of functions with rapid irregular oscillations , 1982 .
[4] Yudell L. Luke,et al. On the computation of oscillatory integrals , 1954, Mathematical Proceedings of the Cambridge Philosophical Society.
[5] Charles S. Duris. Generating and Compounding Product-Type Newton-Coates Quadrature Formulas , 1976, TOMS.
[6] A. C. Allison,et al. Exponential-fitting methods for the numerical solution of the schrodinger equation , 1978 .
[7] E. A. Flinn. A Modification of Filon's Method of Numerical Integration , 1960, JACM.
[8] E. O. Tuck,et al. A Simple “Filon-trapezoidal” rule , 1967 .
[9] U. Ehrenmark. On the error term of the filon quadrature formulae , 1987 .
[10] Tom Lyche,et al. Chebyshevian multistep methods for ordinary differential equations , 1972 .
[11] A. C. Allison,et al. The numerical solution of coupled differential equations arising from the Schrödinger equation , 1970 .
[12] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[13] T. Håvie. Remarks on an expansion for integrals of rapidly oscillating functions , 1973 .
[14] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[15] Lloyd D. Fosdick,et al. An algorithm for Filon quadrature , 1969, CACM.
[16] Ulf Torsten Ehrenmark,et al. Far field asymptotic of the two-dimensional linearised sloping beach problem , 1987 .