Wie funktioniert die Tyrosinase? Neue Einblicke aus Modellchemie und Strukturbiologie

[1]  B. Krebs,et al.  Biochemical and spectroscopic characterization of catechol oxidase from sweet potatoes (Ipomoea batatas) containing a type‐3 dicopper center 1 , 1998, FEBS letters.

[2]  W. Tolman MAKING AND BREAKING THE DIOXYGEN 0-0 BOND : NEW INSIGHTS FROM STUDIES OF SYNTHETIC COPPER COMPLEXES , 1997 .

[3]  K. Karlin,et al.  Reactivity patterns and comparisons in three classes of synthetic copper-dioxygen {Cu2-O2} complexes: implication for structure and biological relevance , 1991 .

[4]  W. Tolman,et al.  Binucleating Ligand Structural Effects on (μ-Peroxo)- and Bis(μ-oxo)dicopper Complex Formation and Decay: Competition between Arene Hydroxylation and Aliphatic C−H Bond Activation , 1997 .

[5]  K. Karlin,et al.  Reversible Dioxygen Binding and Aromatic Hydroxylation in O2-Reactions with Substituted Xylyl Dinuclear Copper(I) Complexes: Syntheses and Low-Temperature Kinetic/Thermodynamic and Spectroscopic Investigations of a Copper Monooxygenase Model System , 1994 .

[6]  E. Pidcock,et al.  Investigation of the Reactive Oxygen Intermediate in an Arene Hydroxylation Reaction Performed by Xylyl-Bridged Binuclear Copper Complexes , 1998 .

[7]  K. V. van Holde,et al.  Crystal structure of a functional unit from Octopus hemocyanin. , 1998, Journal of molecular biology.

[8]  D. Root,et al.  Spectroscopy of Binuclear Dioxygen Complexes , 1994 .

[9]  Jason A. Halfen,et al.  Mechanistic Study of the Oxidative N-Dealkylation Reactions of Bis(μ-oxo)dicopper Complexes , 1996 .

[10]  K. Hodgson,et al.  Cu K-Edge XAS Study of the [Cu2(μ-O)2] Core: Direct Experimental Evidence for the Presence of Cu(III) , 1997 .

[11]  K. Hodgson,et al.  Exogenous Substrate Reactivity with a [Cu(III)2O2]2+ Core: Structural Implications , 1999 .

[12]  J. Bonaventura,et al.  Crystal structure of deoxygenated limulus polyphemus subunit II hemocyanin at 2.18 Å resolution: Clues for a mechanism for allosteric regulation , 1993, Protein science : a publication of the Protein Society.

[13]  S. Fukuzumi,et al.  Aliphatic Hydroxylation by a Bis(μ-oxo)dinickel(III) Complex , 1999 .

[14]  E. Solomon,et al.  Competitive inhibitor binding to the binuclear copper active site in tyrosinase , 1981 .

[15]  Bart Hazes,et al.  Crystallographic analysis of oxygenated and deoxygenated states of arthropod hemocyanin shows unusual differences , 1994, Proteins.

[16]  J N Rodríguez-López,et al.  Tyrosinase: a comprehensive review of its mechanism. , 1995, Biochimica et biophysica acta.

[17]  Patrick L. Holland,et al.  Experimental Studies of the Interconversion of μ-η2:η2-Peroxo- and Bis(μ-oxo)dicopper Complexes , 1999 .

[18]  W. Hol,et al.  3.2 Å structure of the copper-containing, oxygen-carrying protein Panulirus interruptus haemocyanin , 1984, Nature.

[19]  E. C. Wilkinson,et al.  Modeling Copper-Dioxygen Reactivity in Proteins: Aliphatic C-H Bond Activation by a New Dicopper(II)-Peroxo Complex , 1994 .

[20]  E. Monzani,et al.  Functional Modeling of Tyrosinase. Mechanism of Phenol ortho-Hydroxylation by Dinuclear Copper Complexes , 1996 .

[21]  William B. Tolman,et al.  Ist der Bis(-oxo)dikupfer-Kern fhig, ein Aren zu hydroxylieren? , 1999 .

[22]  Adam P. Cole,et al.  Irreversible Reduction of Dioxygen by Simple Peralkylated Diamine−Copper(I) Complexes: Characterization and Thermal Stability of a [Cu2(μ-O)2]2+ Core , 1997 .

[23]  E. Solomon,et al.  Multicopper Oxidases and Oxygenases. , 1996, Chemical reviews.

[24]  James C. Sacchettini,et al.  Crystal structure of a plant catechol oxidase containing a dicopper center , 1998, Nature Structural Biology.

[25]  Y. Iwata,et al.  REACTION ASPECTS OF A MU -PEROXO BINUCLEAR COPPER(II) COMPLEX , 1990 .

[26]  M. Beltramini,et al.  The enzymatic properties of Octopus vulgaris hemocyanin: o-diphenol oxidase activity. , 1998, Biochemistry.

[27]  Patrick L. Holland,et al.  Is the Bis(μ-oxo)dicopper Core Capable of Hydroxylating an Arene? , 1999, Angewandte Chemie.

[28]  H. Decker,et al.  Tarantula Hemocyanin Shows Phenoloxidase Activity* , 1998, The Journal of Biological Chemistry.

[29]  P. Holland,et al.  Dioxygen activation by copper sites: relative stability and reactivity of (μ-η2:η2-peroxo)- and bis(μ-oxo)dicopper cores , 1999 .

[30]  E. Pidcock,et al.  Peroxo-, Oxo-, and Hydroxo-Bridged Dicopper Complexes: Observation of Exogenous Hydrocarbon Substrate Oxidation , 1998 .

[31]  K. Karlin,et al.  Copper-mediated hydroxylation of an arene ― model system for the action of copper monooxygenases: structures of a binuclear Cu(I) complex and its oxygenated product , 1984 .

[32]  M. Beltramini,et al.  The o‐diphenol oxidase activity of arthropod hemocyanin , 1996, FEBS letters.

[33]  Y. Moro-oka,et al.  Copper-Dioxygen Complexes. Inorganic and Bioinorganic Perspectives , 1994 .

[34]  Jason A. Halfen,et al.  Reversible Cleavage and Formation of the Dioxygen O-O Bond Within a Dicopper Complex , 1996, Science.

[35]  Edward I. Solomon,et al.  Spectroscopic and Electronic Structural Studies of the Cu(III)2 Bis-μ-oxo Core and Its Relation to the Side-On Peroxo-Bridged Dimer , 1999 .

[36]  Edward I. Solomon,et al.  An electronic structural comparison of copper-peroxide complexes of relevance to hemocyanin and tyrosinase active sites , 1991 .

[37]  W G Hol,et al.  Crystal structure of hexameric haemocyanin from Panulirus interruptus refined at 3.2 A resolution. , 1994, Journal of molecular biology.

[38]  E. Solomon,et al.  Substrate analogue binding to the coupled binuclear copper active site in tyrosinase , 1985 .

[39]  E. Monzani,et al.  Reversible dioxygen binding and phenol oxygenation in a tyrosinase model system. , 2000, Chemistry.