First-principles study of the lattice dynamics of Sb2S3.

We present a lattice dynamics study of orthorhombic antimony sulphide (Sb2S3) obtained using density-functional calculations in conjunction with the supercell force-constant method. The effect of Born effective charges is taken into account using a mixed-space approach, resulting in the splitting of longitudinal and transverse optical (LO-TO) phonon branches near the zone center. Zone-center frequencies agree well with Raman scattering experiments. Due to the slow decay of the interatomic force constants (IFC), a minimal 2 × 4 × 2 supercell (Pnma setting) with 320 atoms is crucial for an accurate determination of the dispersion relations. Smaller supercells result in artificial acoustic phonon softening and unphysical lifting of degeneracies along high symmetry directions. We propose a scheme to investigate the convergence of the IFC with respect to the supercell sizes. The phonon softening can be attributed to the periodic images that affect the accuracy of the force constants, and the truncation of long-ranged forces. The commensuration of the q-vectors with the supercell size is crucial to preserve degeneracies in Sb2S3 crystals.

[1]  P. Reiss,et al.  Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications , 2013 .

[3]  Fähnle,et al.  Ab initio force-constant method for phonon dispersions in alkali metals. , 1995, Physical Review Letters.

[4]  D. Vanderbilt,et al.  Giant LO-TO splittings in perovskite ferroelectrics. , 1994, Physical review letters.

[5]  A. van de Walle,et al.  The effect of lattice vibrations on substitutional alloy thermodynamics , 2001, cond-mat/0106490.

[6]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  Georg Kresse,et al.  Ab initio Force Constant Approach to Phonon Dispersion Relations of Diamond and Graphite , 1995 .

[8]  S. Chaplot,et al.  Neutron, x-ray and lattice dynamical studies of paraelectric Sb2S3 , 1982 .

[9]  F. Giustino,et al.  Structural and Electronic Properties of Semiconductor‐Sensitized Solar‐Cell Interfaces , 2011 .

[10]  First-principles calculation of vibrational Raman spectra in large systems: signature of small rings in crystalline SiO2. , 2002, Physical review letters.

[11]  Younan Xia,et al.  Chemical transformation: a powerful route to metal chalcogenide nanowires , 2006 .

[12]  M. Mansuripur,et al.  Simple colloidal synthesis of single-crystal Sb-Se-S nanotubes with composition dependent band-gap energy in the near-infrared. , 2009, Nano letters.

[13]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[14]  Sushil Auluck,et al.  First-principles calculations of Born effective charges and spontaneous polarization of ferroelectric bismuth titanate , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  K. Schwarz,et al.  Polarization‐Dependent Raman Characterization of Stibnite (Sb2S3) , 2010 .

[16]  J. Gonzalez-Leal,et al.  Optical properties and structure of amorphous (As0.33S0.67)100−xTex and GexSb40−xS60 chalcogenide semiconducting alloy films deposited by vacuum thermal evaporation , 2006 .

[17]  S. Komarneni,et al.  Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic-inorganic thin film photovoltaics. , 2012, Chemical communications.

[18]  Stefano Curtarolo,et al.  High-throughput electronic band structure calculations: Challenges and tools , 2010, 1004.2974.

[19]  Yoshiyuki Kawazoe,et al.  First-Principles Determination of the Soft Mode in Cubic ZrO 2 , 1997 .

[20]  Y. Duan,et al.  Density functional theory study of the structural, electronic, lattice dynamical, and thermodynamic properties of Li 4 SiO 4 and its capability for CO 2 capture , 2011 .

[21]  E. Makovicky,et al.  Equation of state and crystal structure of Sb2S3 between 0 and 10 GPa , 2003 .

[22]  Qihua Xiong,et al.  Phonons in Bi 2 S 3 nanostructures: Raman scattering and first-principles studies , 2011 .

[23]  Jun-Ho Yum,et al.  Sb2S3-Based Mesoscopic Solar Cell using an Organic Hole Conductor , 2010 .

[24]  M. Schubert,et al.  Generalized ellipsometry for biaxial absorbing materials: determination of crystal orientation and optical constants of Sb(2)S(3). , 2002, Optics letters.

[25]  X. Gonze,et al.  First-principles study of the electronic properties of A2B3 minerals, with A=Bi,Sb and B=S,Se , 2005 .

[26]  Md. K. Nazeeruddin,et al.  High-performance nanostructured inorganic-organic heterojunction solar cells. , 2010, Nano letters.

[27]  W. Cochran,et al.  Dielectric constants and lattice vibrations , 1962 .

[28]  F. Giustino,et al.  GW quasiparticle band structures of stibnite, antimonselite, bismuthinite, and guanajuatite , 2013, 1301.6571.

[29]  S. N. Salama,et al.  Some physical properties of evaporated thin films of antimony trisulphide , 1990 .

[30]  A. Foreman,et al.  Lattice Vibrations and Harmonic Forces in Solids , 1957 .

[31]  E. Talik,et al.  X-ray Photoelectron Spectroscopy of Sb2S3 Crystals , 2002 .

[32]  Graeme Ackland,et al.  Practical methods in ab initio lattice dynamics , 1997 .

[33]  Gary Hodes,et al.  Sb2S3-Sensitized Nanoporous TiO2 Solar Cells , 2009 .

[34]  A. Baldereschi,et al.  Role of covalent bonding in the polarization of perovskite oxides: The case of KNbO3. , 1994, Physical review. B, Condensed matter.

[35]  S. Shang,et al.  A mixed-space approach to first-principles calculations of phonon frequencies for polar materials , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  Jer-Lai Kuo,et al.  Composition-temperature phase diagram of BexZn1−xO from first principles , 2010 .

[37]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[38]  Xavier Gonze,et al.  First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm , 1997 .

[39]  C. Thomsen,et al.  Raman spectroscopy of orthorhombic perovskitelike YMnO_{3} and LaMnO_{3} , 1998 .

[40]  S. Barth,et al.  Nanoscale ferroelectric and piezoelectric properties of Sb2S3 nanowire arrays. , 2012, Nano letters.

[41]  Stefano de Gironcoli,et al.  Ab initio calculation of phonon dispersions in semiconductors. , 1991, Physical review. B, Condensed matter.