暂无分享,去创建一个
[1] F. Otto,et al. An optimal error estimate in stochastic homogenization of discrete elliptic equations , 2012, 1203.0908.
[2] V. Zhikov,et al. Homogenization of Differential Operators and Integral Functionals , 1994 .
[3] Ch. Schwab,et al. Quantized tensor FEM for multiscale problems: diffusion problems in two and three dimensions , 2020, Multiscale Model. Simul..
[4] QUANTITATIVE ESTIMATES ON THE PERIODIC APPROXIMATION OF THE CORRECTOR IN STOCHASTIC HOMOGENIZATION , 2014, 1409.1161.
[5] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .
[6] G. Allaire,et al. Shape optimization by the homogenization method , 1997 .
[7] R. DeVore,et al. Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs , 2010 .
[8] Boris N. Khoromskij,et al. Numerical study in stochastic homogenization for elliptic partial differential equations: Convergence rate in the size of representative volume elements , 2020, Numer. Linear Algebra Appl..
[9] P. Frauenfelder,et al. Finite elements for elliptic problems with stochastic coefficients , 2005 .
[10] Robert Scheichl,et al. A Hybrid Alternating Least Squares-TT-Cross Algorithm for Parametric PDEs , 2017, SIAM/ASA J. Uncertain. Quantification.
[11] Boris N. Khoromskij,et al. Tensor Method for Optimal Control Problems Constrained by Fractional 3D Elliptic Operator with Variable Coefficients , 2020, ArXiv.
[12] F. Otto,et al. An optimal variance estimate in stochastic homogenization of discrete elliptic equations , 2011, 1104.1291.
[13] Boris N. Khoromskij,et al. Tensor Numerical Methods in Quantum Chemistry , 2018 .
[14] Hermann G. Matthies,et al. Application of hierarchical matrices for computing the Karhunen–Loève expansion , 2009, Computing.
[15] E. Cancès,et al. An Embedded Corrector Problem for Homogenization. Part I: Theory , 2018, Multiscale Model. Simul..
[16] Claude Jeffrey Gittelson,et al. Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.
[17] Frédéric Legoll,et al. Examples of computational approaches for elliptic, possibly multiscale PDEs with random inputs , 2017, J. Comput. Phys..
[18] The Corrector in Stochastic Homogenization: Near-Optimal Rates With Optimal Stochastic Integrability , 2015 .
[19] Boris N. Khoromskij,et al. Tensor product method for fast solution of optimal control problems with fractional multidimensional Laplacian in constraints , 2021, J. Comput. Phys..
[20] B. Khoromskij,et al. Tensor approach to optimal control problems with fractional d-dimensional elliptic operator in constraints , 2018, 1809.01971.
[21] Boris N. Khoromskij,et al. Tensor-Structured Galerkin Approximation of Parametric and Stochastic Elliptic PDEs , 2011, SIAM J. Sci. Comput..
[22] D. Jeulin,et al. Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .
[23] Boris N. Khoromskij,et al. Tensor Numerical Methods in Scientific Computing , 2018 .
[24] Hermann G. Matthies,et al. Polynomial Chaos Expansion of Random Coefficients and the Solution of Stochastic Partial Differential Equations in the Tensor Train Format , 2015, SIAM/ASA J. Uncertain. Quantification.
[25] Boris N. Khoromskij,et al. Rank Structured Approximation Method for Quasi-Periodic Elliptic Problems , 2016, Comput. Methods Appl. Math..
[26] Boris N. Khoromskij,et al. Quantics-TT Collocation Approximation of Parameter-Dependent and Stochastic Elliptic PDEs , 2010, Comput. Methods Appl. Math..
[27] Frédéric Legoll,et al. Introduction to numerical stochastic homogenization and the related computational challenges: some recent developments , 2011 .
[28] S. Kozlov. AVERAGING OF RANDOM OPERATORS , 1980 .
[29] J. Fischer. The Choice of Representative Volumes in the Approximation of Effective Properties of Random Materials , 2018, Archive for Rational Mechanics and Analysis.
[30] Panagiotis E. Souganidis,et al. Asymptotic and numerical homogenization , 2008, Acta Numerica.
[31] Benjamin Stamm,et al. An embedded corrector problem to approximate the homogenized coefficients of an elliptic equation , 2014, 1412.6347.
[32] Frances Y. Kuo,et al. Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.