Robustness of logic gates and reconfigurability of neuromorphic switching networks

Nanoparticle networks with functional molecular links that show current-voltage characteristics (IVC) with negative differential resistance (NDR) can be trained to perform XOR-AND logic gates (Husband et al. [1]; Skoldberg and Wendin [2]). In this work we investigate the robustness of the Nanocell network by removing links until desired logic gates no longer can be configured or operated within our simulation of the network. We present results for the robustness of XOR-AND configured (halfadder) Nanocells, as well as the effects of varying the IVC and NDR characteristics of the linker molecules.

[1]  M. Reed,et al.  Molecular random access memory cell , 2001 .

[2]  Paul D. Franzon,et al.  Nanocell logic gates for molecular computing , 2002 .

[3]  Wei Wu,et al.  A hybrid nanomemristor/transistor logic circuit capable of self-programming , 2009, Proceedings of the National Academy of Sciences.

[4]  Peter Liljeroth,et al.  Current-Induced Hydrogen Tautomerization and Conductance Switching of Naphthalocyanine Molecules , 2007, Science.

[5]  James M. Tour,et al.  Logic and memory with nanocell circuits , 2003 .

[6]  G. Wendin,et al.  Reconfigurable logic in nanoelectronic switching networks , 2007 .

[7]  W. Marsden I and J , 2012 .

[8]  Weisheng Zhao,et al.  Two‐Terminal Carbon Nanotube Programmable Devices for Adaptive Architectures , 2010, Advanced materials.

[9]  J. Tour,et al.  Study of the room temperature molecular memory observed from a nanowell device , 2005 .

[10]  Carl Önnheim,et al.  Nanocell Devices and Architecture for Configurable Computing With Molecular Electronics , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[11]  S. J. van der Molen,et al.  Light-controlled conductance switching of ordered metal-molecule-metal devices. , 2009, Nano letters.

[12]  Warren Robinett,et al.  Memristor-CMOS hybrid integrated circuits for reconfigurable logic. , 2009, Nano letters.

[13]  G. Kirczenow,et al.  A new approach to the realization and control of negative differential resistance in single-molecule nanoelectronic devices: designer transition metal-thiol interface States. , 2006, Nano letters (Print).

[14]  Mengqiu Long,et al.  Negative differential resistance behaviors in porphyrin molecular junctions modulated with side groups , 2008 .

[15]  Christof Teuscher,et al.  Assessing random dynamical network architectures for nanoelectronics , 2008, 2008 IEEE International Symposium on Nanoscale Architectures.

[16]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[17]  C. Gamrat,et al.  Gold nanoparticle-pentacene memory-transistors , 2008, 0802.2633.

[18]  Changjian Gao,et al.  Cortical Models Onto CMOL and CMOS— Architectures and Performance/Price , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  Valeriu Beiu,et al.  On brain-inspired connectivity and hybrid network topologies , 2008, 2008 IEEE International Symposium on Nanoscale Architectures.