A population MRI brain template and analysis tools for the macaque

ABSTRACT The use of standard anatomical templates is common in human neuroimaging, as it facilitates data analysis and comparison across subjects and studies. For non‐human primates, previous in vivo templates have lacked sufficient contrast to reliably validate known anatomical brain regions and have not provided tools for automated single‐subject processing. Here we present the “National Institute of Mental Health Macaque Template”, or NMT for short. The NMT is a high‐resolution in vivo MRI template of the average macaque brain generated from 31 subjects, as well as a neuroimaging tool for improved data analysis and visualization. From the NMT volume, we generated maps of tissue segmentation and cortical thickness. Surface reconstructions and transformations to previously published digital brain atlases are also provided. We further provide an analysis pipeline using the NMT that automates and standardizes the time‐consuming processes of brain extraction, tissue segmentation, and morphometric feature estimation for anatomical scans of individual subjects. The NMT and associated tools thus provide a common platform for precise single‐subject data analysis and for characterizations of neuroimaging results across subjects and studies. HIGHLIGHTSWe present an anatomical template, distilled from in vivo MRI scans of 31 monkeys.We classified various tissue types and present a novel atlas of blood vasculature.Pial, mid‐cortical, and white matter surfaces are provided for data visualization.Scripts are provided to automate segmentation and characterization of other monkeys.The template, surfaces, segmentation maps, and analysis tools are freely available.

[1]  Douglas L. Rosene,et al.  Age-related effects on cortical thickness patterns of the Rhesus monkey brain , 2012, Neurobiology of Aging.

[2]  John C. Mazziotta,et al.  A Probabilistic Atlas and Reference System for the Human Brain , 2001 .

[3]  Brian B. Avants,et al.  N4ITK: Improved N3 Bias Correction , 2010, IEEE Transactions on Medical Imaging.

[4]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[5]  C. Gross,et al.  Neural representations of faces and body parts in macaque and human cortex: a comparative FMRI study. , 2009, Journal of neurophysiology.

[6]  Olivier Coulon,et al.  The average baboon brain: MRI templates and tissue probability maps from 89 individuals , 2016, NeuroImage.

[7]  J. Price,et al.  Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey , 1994, The Journal of comparative neurology.

[8]  Leslie G. Ungerleider,et al.  Object representations in the temporal cortex of monkeys and humans as revealed by functional magnetic resonance imaging. , 2009, Journal of neurophysiology.

[9]  Torsten Rohlfing,et al.  The INIA19 Template and NeuroMaps Atlas for Primate Brain Image Parcellation and Spatial Normalization , 2012, Front. Neuroinform..

[10]  M. Mallar Chakravarty,et al.  An MRI based average macaque monkey stereotaxic atlas and space (MNI monkey space) , 2011, NeuroImage.

[11]  Daniel Glen,et al.  Three-Dimensional Digital Template Atlas of the Macaque Brain , 2016, Cerebral cortex.

[12]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[13]  N. Logothetis,et al.  A combined MRI and histology atlas of the rhesus monkey brain in stereotaxic coordinates , 2007 .

[14]  N. Logothetis,et al.  fMRI of the Face-Processing Network in the Ventral Temporal Lobe of Awake and Anesthetized Macaques , 2011, Neuron.

[15]  Ned H. Kalin,et al.  Gender differences in brain volume and size of corpus callosum and amygdala of rhesus monkey measured from MRI images , 2000, Brain Research.

[16]  A M Dale,et al.  Measuring the thickness of the human cerebral cortex from magnetic resonance images. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[17]  David C. Van Essen,et al.  Application of Information Technology: An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex , 2001, J. Am. Medical Informatics Assoc..

[18]  Doris Y. Tsao,et al.  Faces and objects in macaque cerebral cortex , 2003, Nature Neuroscience.

[19]  Muge M. Bakircioglu,et al.  Mapping visual cortex in monkeys and humans using surface-based atlases , 2001, Vision Research.

[20]  R. H. Clarke,et al.  THE STRUCTURE AND FUNCTIONS OF THE CEREBELLUM EXAMINED BY A NEW METHOD. , 1908 .

[21]  Yundi Shi,et al.  A diffusion tensor MRI atlas of the postmortem rhesus macaque brain , 2015, NeuroImage.

[22]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[23]  John W. Harwell,et al.  Cortical parcellations of the macaque monkey analyzed on surface-based atlases. , 2012, Cerebral cortex.

[24]  Leslie G. Ungerleider,et al.  Curvature-processing network in macaque visual cortex , 2014, Proceedings of the National Academy of Sciences.

[25]  Alan C. Evans,et al.  Enhancement of MR Images Using Registration for Signal Averaging , 1998, Journal of Computer Assisted Tomography.

[26]  Bevil R. Conway,et al.  Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex , 2013, Nature Neuroscience.

[27]  Brian B. Avants,et al.  Registration based cortical thickness measurement , 2009, NeuroImage.

[28]  K. Uğurbil,et al.  High contrast and fast three‐dimensional magnetic resonance imaging at high fields , 1995, Magnetic resonance in medicine.

[29]  Lewis D. Griffin The intrinsic geometry of the cerebral cortex. , 1994, Journal of theoretical biology.

[30]  R Weissleder,et al.  Monocrystalline iron oxide nanocompounds (MION): Physicochemical properties , 1993, Magnetic resonance in medicine.

[31]  Brian B. Avants,et al.  An Open Source Multivariate Framework for n-Tissue Segmentation with Evaluation on Public Data , 2011, Neuroinformatics.

[32]  Roger B. H. Tootell,et al.  A curvature-processing network in macaque visual cortex , 2013 .

[33]  Arno Klein,et al.  Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements , 2014, NeuroImage.

[34]  T. Insel,et al.  Evolution of the Cerebellum in Primates: Differences in Relative Volume among Monkeys, Apes and Humans , 1998, Brain, Behavior and Evolution.

[35]  R. H. Clarke,et al.  The Horsley–Clarke stereotaxic apparatus , 1978, The British journal of surgery.

[36]  Brian B. Avants,et al.  The Shape Operator for Differential Analysis of Images , 2003, IPMI.

[37]  Atsushi Iriki,et al.  Creating a population-averaged standard brain template for Japanese macaques (M. fuscata) , 2010, NeuroImage.

[38]  N. Makris,et al.  A methodology for analyzing curvature in the developing brain from preterm to adult , 2008, Int. J. Imaging Syst. Technol..

[39]  N. Logothetis,et al.  Functional imaging of the monkey brain , 1999, Nature Neuroscience.

[40]  Kevin J Black,et al.  Atlas template images for nonhuman primate neuroimaging: baboon and macaque. , 2004, Methods in enzymology.

[41]  Brian B. Avants,et al.  The optimal template effect in hippocampus studies of diseased populations , 2010, NeuroImage.

[42]  Evan Fletcher,et al.  Longitudinal analysis of the developing rhesus monkey brain using magnetic resonance imaging: birth to adulthood , 2015, Brain Structure and Function.

[43]  Doris Y. Tsao,et al.  Comparing face patch systems in macaques and humans , 2008, Proceedings of the National Academy of Sciences.

[44]  Yundi Shi,et al.  The UNC-Wisconsin Rhesus Macaque Neurodevelopment Database: A Structural MRI and DTI Database of Early Postnatal Development , 2017, Frontiers in neuroscience.

[45]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[46]  J Mazziotta,et al.  A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[47]  Matthew J. McAuliffe,et al.  Medical Image Processing, Analysis and Visualization in clinical research , 2001, Proceedings 14th IEEE Symposium on Computer-Based Medical Systems. CBMS 2001.

[48]  Alan C. Evans,et al.  A three-dimensional MRI atlas of the mouse brain with estimates of the average and variability. , 2005, Cerebral cortex.

[49]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[50]  John Suckling,et al.  Intrinsic Curvature: a Marker of Millimeter-Scale Tangential cortico-Cortical Connectivity? , 2011, Int. J. Neural Syst..

[51]  John H. R. Maunsell,et al.  Topographic organization of the middle temporal visual area in the macaque monkey: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries , 1987, The Journal of comparative neurology.

[52]  Sterling C. Johnson,et al.  A population-average MRI-based atlas collection of the rhesus macaque , 2009, NeuroImage.

[53]  Robert Turner,et al.  3D MDEFT imaging of the human brain at 4.7 T with reduced sensitivity to radiofrequency inhomogeneity , 2005, Magnetic resonance in medicine.

[54]  Timothy O. Laumann,et al.  Informatics and Data Mining Tools and Strategies for the Human Connectome Project , 2011, Front. Neuroinform..

[55]  J. Maunsell,et al.  Two‐dimensional maps of the cerebral cortex , 1980, The Journal of comparative neurology.

[56]  R Turner,et al.  Optimisation of the 3D MDEFT sequence for anatomical brain imaging: technical implications at 1.5 and 3 T , 2004, NeuroImage.

[57]  Thomas Lewiner,et al.  Efficient Implementation of Marching Cubes' Cases with Topological Guarantees , 2003, J. Graphics, GPU, & Game Tools.

[58]  Karl J. Friston,et al.  Multisubject fMRI Studies and Conjunction Analyses , 1999, NeuroImage.