Soft-decision and erasure decoding in fast frequency-hopping systems with convolutional, turbo, and Reed-Solomon codes

In this contribution we present an exhaustive treatment of various coding and decoding techniques for use in fast frequency-hopping/multiple frequency shift keying multiple-access systems. One of the main goals is to show how reliability information on each received bit can be derived to enable soft-decision decoding. Convolutional codes as well as turbo codes are considered applying soft-decision, erasure, and hard-decision decoding. Their performance is compared to that of previously proposed Reed-Solomon with either errors-only or errors-and-erasures decoding. A mobile radio environment yielding a frequency-selective fading channel is assumed. It is shown that the application of turbo codes and convolutional codes with soft decision decoding can allow for a comparable number of simultaneously transmitting users to Reed-Solomon codes with errors-and-erasures decoding. Furthermore, the advantage of soft decisions is shown, which can be applied to a widely and growing range of channel codes. The pertinent technique of calculating soft decisions is described in the paper.