A best-compromise bicriteria scheduling algorithm for malleable tasks
暂无分享,去创建一个
[1] Klaus Jansen,et al. Scheduling to Minimize the Average Completion Time of Dedicated Tasks , 2000, FSTTCS.
[2] Pierre-François Dutot,et al. Bi-criteria algorithm for scheduling jobs on cluster platforms , 2004, SPAA '04.
[3] David B. Shmoys,et al. Scheduling to Minimize Average Completion Time: Off-Line and On-Line Approximation Algorithms , 1997, Math. Oper. Res..
[4] Hadas Shachnai,et al. Multiresource Malleable Task Scheduling to Minimize Response Time , 1999, Inf. Process. Lett..
[5] David B. Shmoys,et al. Using dual approximation algorithms for scheduling problems: Theoretical and practical results , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).
[6] Cynthia A. Phillips,et al. Improved Scheduling Algorithms for Minsum Criteria , 1996, ICALP.
[7] David P. Williamson,et al. Scheduling Parallel Machines On-Line , 1995, SIAM J. Comput..
[8] Philip S. Yu,et al. Approximate algorithms scheduling parallelizable tasks , 1992, SPAA '92.
[9] Philip S. Yu,et al. Smart SMART Bounds for Weighted Response Time Scheduling , 1999, SIAM J. Comput..
[10] David B. Shmoys,et al. Scheduling to minimize average completion time: off-line and on-line algorithms , 1996, SODA '96.
[11] Jean-Charles Billaut,et al. Multicriteria scheduling , 2005, Eur. J. Oper. Res..