A 50-ps Gated VCRO-Based TDC With Compact Phase Interpolators for Flash LiDAR

This article describes a small footprint, low power gated voltage-controlled ring oscillator (VCRO)-based Time-To-Digital converter (TDC) for Flash Light Detection and Ranging (LiDAR) applications. A group of compact local phase interpolators (PIs) are used to improve the resolution, which is highly area-saving and compatible with in-pixel TDC structure. A non-reset operation mode is introduced to increase the linearity by taking advantage of the dynamic element matching (DEM) property. The proposed TDC has been fabricated in a 0.18-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> HV-CMOS technology in a 32 <inline-formula> <tex-math notation="LaTeX">$\times32$ </tex-math></inline-formula> array, achieving a resolution of 50 ps. A Phase Lock Loop (PLL) is adopted to track the process, voltage, and temperature (PVT) variations and make the resolution tunable. A power-saving analog buffer is used to distribute the stable control voltage to all the in-pixel TDCs. Measurements show a good linearity performance and array uniformity (a deviation of only 0.89 ps), making it suitable for Flash LiDAR applications.

[1]  Alessandro Tontini,et al.  A $64\times 64$-Pixel Flash LiDAR SPAD Imager with Distributed Pixel-to-Pixel Correlation for Background Rejection, Tunable Automatic Pixel Sensitivity and First-Last Event Detection Strategies for Space Applications , 2022, 2022 IEEE International Solid- State Circuits Conference (ISSCC).

[2]  Zhangming Zhu,et al.  A High Linearity TDC With a United-Reference Fractional Counter for LiDAR , 2022, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  Rui Ma,et al.  A 32 × 32-Pixel Flash LiDAR Sensor With Noise Filtering for High-Background Noise Applications , 2021, IEEE Transactions on Circuits and Systems I: Regular Papers.

[4]  Jung-Hoon Chun,et al.  Direct TOF Scanning LiDAR Sensor With Two-Step Multievent Histogramming TDC and Embedded Interference Filter , 2021, IEEE Journal of Solid-State Circuits.

[5]  Kai Zang,et al.  A 240 x 160 3D Stacked SPAD dToF Image Sensor with Rolling Shutter and In Pixel Histogram for Mobile Devices , 2021, IEEE Open Journal of the Solid-State Circuits Society.

[6]  Matteo Perenzoni,et al.  A 32 × 32-Pixel CMOS Imager for Quantum Optics With Per-SPAD TDC, 19.48% Fill-Factor in a 44.64-μm Pitch Reaching 1-MHz Observation Rate , 2020, IEEE Journal of Solid-State Circuits.

[7]  Davide Contini,et al.  Large-Area, Fast-Gated Digital SiPM With Integrated TDC for Portable and Wearable Time-Domain NIRS , 2020, IEEE Journal of Solid-State Circuits.

[8]  Juha Kostamovaara,et al.  A 32 × 128 SPAD-257 TDC Receiver IC for Pulsed TOF Solid-State 3-D Imaging , 2020, IEEE Journal of Solid-State Circuits.

[9]  Edoardo Charbon,et al.  A Modular, Direct Time-of-Flight Depth Sensor in 45/65-nm 3-D-Stacked CMOS Technology , 2019, IEEE Journal of Solid-State Circuits.

[10]  Martin Wolf,et al.  A 30-frames/s, $252\times144$ SPAD Flash LiDAR With 1728 Dual-Clock 48.8-ps TDCs, and Pixel-Wise Integrated Histogramming , 2019, IEEE Journal of Solid-State Circuits.

[11]  P. Rombouts,et al.  Enhanced circuit for linear ring VCO‐ADCs , 2019, Electronics Letters.

[12]  Robert K. Henderson,et al.  5.7 A 256×256 40nm/90nm CMOS 3D-Stacked 120dB Dynamic-Range Reconfigurable Time-Resolved SPAD Imager , 2019, 2019 IEEE International Solid- State Circuits Conference - (ISSCC).

[13]  J. Kostamovaara,et al.  256×8 SPAD Array With 256 Column TDCs for a Line Profiling Laser Radar , 2019 .

[14]  Matteo Perenzoni,et al.  Design and Characterization of a 43.2-ps and PVT-Resilient TDC for Single-Photon Imaging Arrays , 2018, IEEE Transactions on Circuits and Systems II: Express Briefs.

[15]  Ion Vornicu,et al.  Arrayable Voltage-Controlled Ring-Oscillator for Direct Time-of-Flight Image Sensors , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[16]  S. Pellegrini,et al.  Backside illuminated SPAD image sensor with 7.83μm pitch in 3D-stacked CMOS technology , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[17]  Yun Chiu,et al.  A Skew-Free 10 GS/s 6 bit CMOS ADC With Compact Time-Domain Signal Folding and Inherent DEM , 2016, IEEE Journal of Solid-State Circuits.

[18]  Matteo Perenzoni,et al.  Small area 0.3 pJ/conv, 45 ps time-to-digital converter for arrays of silicon photomultiplier interfaces in 150 nm CMOS , 2015 .

[19]  Alberto Tosi,et al.  A High-Linearity, 17 ps Precision Time-to-Digital Converter Based on a Single-Stage Vernier Delay Loop Fine Interpolation , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[20]  Ryuichi Fujimoto,et al.  A-104 dBc/Hz In-Band Phase Noise 3 GHz All Digital PLL with Phase Interpolation Based Hierarchical Time to Digital Converter , 2012, IEICE Trans. Electron..

[21]  Edoardo Charbon,et al.  A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter , 2011, 2011 IEEE International Solid-State Circuits Conference.

[22]  Edoardo Charbon,et al.  A 32×32 50ps resolution 10 bit time to digital converter array in 130nm CMOS for time correlated imaging , 2009, 2009 IEEE Custom Integrated Circuits Conference.

[23]  Stephan Henzler,et al.  A Local Passive Time Interpolation Concept for Variation-Tolerant High-Resolution Time-to-Digital Conversion , 2008, IEEE Journal of Solid-State Circuits.

[24]  A.A. Abidi,et al.  Phase Noise and Jitter in CMOS Ring Oscillators , 2006, IEEE Journal of Solid-State Circuits.

[25]  John A. McNeill,et al.  Jitter in oscillators with 1/f noise sources , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[26]  Richard Sumner,et al.  A sliding scale method to reduce the differential non linearity of a time digitizer , 2001, 2001 IEEE Nuclear Science Symposium Conference Record (Cat. No.01CH37310).

[27]  T.H. Lee,et al.  Oscillator phase noise: a tutorial , 1999, IEEE Journal of Solid-State Circuits.