Uniform asymptotic description of electromagnetic pulse propagation in a linear dispersive medium with absorption (the Lorentz medium)

The uniform asymptotic description of electromagnetic pulse propagation in a single-resonance Lorentz medium is presented. The modern asymptotic theory used here relies on Olver’s saddle-point method [ Stud. Appl. Math. Rev.12, 228 ( 1970)] together with the uniform asymptotic theory of Handelsman and Bleistein [ Arch. Ration. Mech. Anal.35, 267 ( 1969)] when two saddle points are at infinity (for the Sommerfeld precursor), the uniform asymptotic theory of Chester et al. [ Proc. Cambridge Philos. Soc.53, 599 ( 1957)] for two neighboring saddle points (for the Brillouin precursor), and the uniform asymptotic theory of Bleistein [ Commun. Pure Appl. Math.19, 353 ( 1966)] for a saddle point and nearby pole singularity (for the signal arrival). Together with the recently derived approximations for the dynamical saddle-point evolution, which are accurate over the entire space–time domain of interest, the resultant asymptotic expressions provide a complete, uniformly valid description of the entire dynamic field evolution in the mature dispersion limit. Specific examples of the delta-function pulse and the unit-step-function-modulated signal are considered.

[1]  Norman Bleistein,et al.  Uniform asymptotic expansions of integrals with stationary point near algebraic singularity , 1966 .

[2]  N. Bleistein Uniform Asymptotic Expansions of Integrals with Many Nearby Stationary Points and Algebraic Singularities , 1967 .

[3]  H. Baerwald Über die Fortpflanzung von Signalen in dispergierenden Systemen Zweiter Teil: Verlustarme kontinuierliche Systeme , 1930 .

[4]  C. Chester,et al.  An extension of the method of steepest descents , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[5]  Norman Bleistein,et al.  Uniform asymptotic expansions of integrals that arise in the analysis of precursors , 1969 .

[6]  George C. Sherman,et al.  Description of Pulse Dynamics in Lorentz Media in Terms of the Energy Velocity and Attenuation of Time-Harmonic Waves , 1981 .

[7]  A. Sommerfeld,et al.  Über die Fortpflanzung des Lichtes in dispergierenden Medien , 1914 .

[8]  F. Olver Why Steepest Descents , 1970 .

[9]  T. Weber,et al.  Brillouin revisited: Signal velocity definition for puise propagation in a medium with resonant anomalous dispersion , 1982 .

[10]  L. Rosenfeld,et al.  Theory of electrons , 1951 .

[11]  S. Lang,et al.  An Introduction to Fourier Analysis and Generalised Functions , 1959 .

[12]  L. Brillouin,et al.  Über die Fortpflanzung des Lichtes in dispergierenden Medien , 1914 .

[13]  H. Baerwald Über die Fortpflanzung von Signalen in dispergierenden Systemen Erster Teil: Allgemeine Grundlagen. Kontinuierliche Systeme ohne Verluste , 1930 .

[14]  G. Sherman,et al.  Propagation of electromagnetic pulses in a linear dispersive medium with absorption (the Lorentz medium) , 1988 .