Parametric simplex algorithms for a class of NP-Complete problems whose average number of steps is polynomial

We will show that the average number of steps of parametric simplex algorithms for obtaining global minima of rank-one and rank-two bilinear-programming problems are lower-order polynomial functions of the problem size under the standard assumptions on the distribution of the data imposed in the probabilistic analysis of the simplex method. This means that there exist algorithms for some special class of NP-complete problems, whose average number of arithmetics are polynomial order of the problem size.

[1]  Panos M. Pardalos,et al.  GLOBAL OPTIMIZATION ALGORITHMS FOR LINEARLY CONSTRAINED INDEFINITE QUADRATIC PROBLEMS , 1991 .

[2]  Nimrod Megiddo,et al.  On the expected number of linear complementarity cones intersected by random and semi-random rays , 1986, Math. Program..

[3]  Tomomi Matsui,et al.  Parametric simplex algorithms for solving a special class of nonconvex minimization problems , 1991, J. Glob. Optim..

[4]  Hiroshi Konno,et al.  Efficient algorithms for solving rank two and rank three bilinear programming problems , 1991, J. Glob. Optim..

[5]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[6]  Katta G. Murty,et al.  Computational complexity of parametric linear programming , 1980, Math. Program..

[7]  Michael J. Todd,et al.  Polynomial expected behavior of a pivoting algorithm for linear complementarity and linear programming problems , 1986, Math. Program..

[8]  Jan Karel Lenstra,et al.  Technical Note - On the Expected Performance of Branch-and-Bound Algorithms , 1978, Oper. Res..

[9]  Panos M. Pardalos,et al.  Quadratic programming with one negative eigenvalue is NP-hard , 1991, J. Glob. Optim..

[10]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[11]  Stephen A. Vavasis,et al.  Quadratic Programming is in NP , 1990, Inf. Process. Lett..

[12]  Richard M. Karp,et al.  A Family of Simplex Variants Solving an m × d Linear Program in Expected Number of Pivot Steps Depending on d Only , 1986, Math. Oper. Res..

[13]  Stephen Smale,et al.  On the average number of steps of the simplex method of linear programming , 1983, Math. Program..

[14]  Nimrod Megiddo,et al.  A simplex algorithm whose average number of steps is bounded between two quadratic functions of the smaller dimension , 1984, STOC '84.

[15]  T. L. Saaty,et al.  The computational algorithm for the parametric objective function , 1955 .

[16]  K. Borgwardt The Simplex Method: A Probabilistic Analysis , 1986 .

[17]  Panos M. Pardalos,et al.  Polynomial time algorithms for some classes of constrained nonconvex quadratic problems , 1990 .

[18]  R. Shamir The Efficiency of the Simplex Method: A Survey , 1987 .