Laser magnetic resonance study of the gas phase reactions of OH with CO, NO, and NO2

A laser magnetic resonance spectrometer has been used in combination with a discharge‐flow system to measure the gas phase reaction rates of the OH radical with CO, NO, and NO2 at 296°K and over a pressure range 0.4–5 torr. For the bimolecular reaction OH + CO → CO2 + H we measure a rate constant, k = 1.56×10−13 cm3/molecule·sec. For the termolecular reactions OH + NO + M → HNO2 + M, M = He, k = 4.0×10−31 cm6/molecule2·sec; M = Ar, k = 4.4×10−31 cm6/molecule2·sec; M = N2, k = 7.8×10−31 cm6/molecule2·sec. For the reaction OH + NO2 + N2 → HNO3 + N2, k = 2.9×10−30 cm6/molecule2·sec. Laser magnetic resonance detection of radicals is shown to be extremely sensitive, linear, and versatile. A complete description of this technique is presented with a discussion of its potential in the study of the reactions of free radicals.

[1]  James G. Anderson,et al.  Kinetics of the reaction OH + NO2 + M → HNO3 + M , 1972 .

[2]  W. E. Wilson A Critical Review of the Gas‐Phase Reaction Kinetics of the Hydroxyl Radical , 1972 .

[3]  K. Evenson,et al.  CH FREE RADICALS DETECTED BY INFRARED LASER MAGNETIC RESONANCE , 1971 .

[4]  R. H. Smith,et al.  Reactions of OH Radicals in the H–NO2 and H–NO2–CO Systems , 1971 .

[5]  M. Nicolet,et al.  Chemospheric processes of nitric oxide in the mesosphere and stratosphere , 1973 .

[6]  H. Levy Photochemistry of minor constituents in the troposphere , 1973 .

[7]  J. Margitan,et al.  Gas phase recombination of OH with NO and NO2 , 1974 .

[8]  A. A. Westenberg,et al.  Steady-state intermediate concentrations and rate constants. HO2 results , 1972 .

[9]  C. J. Howard,et al.  HO2 detected by laser magnetic resonance , 1974 .

[10]  Kenneth M. Evenson,et al.  ABSOLUTE FREQUENCY MEASUREMENTS OF THE 28‐ AND 78‐μm cw WATER VAPOR LASER LINES , 1970 .

[11]  Edward A. Mason,et al.  Gaseous Diffusion Coefficients , 1972 .

[12]  E. Hughes Purification and Vapor Pressure of Nitric Oxide , 1961 .

[13]  R. Curl,et al.  Laser Magnetic Resonance Spectrum of NO2 at 337 μm and 311 μm , 1972 .

[14]  T. Bérces,et al.  Kinetics of photolysis of nitric acid vapour. Part 2.—Decomposition of nitric acid photosensitized by nitrogen dioxide , 1970 .

[15]  F. Kaufman,et al.  Gas Phase Kinetics of H+H+H2→2H2 , 1970 .

[16]  J. Herron Mass‐Spectrometric Study of the Rate of the Reaction CO + OH , 1966 .

[17]  A. A. Westenberg,et al.  Rate Measurements on OH + NO + M and OH + NO2 + M , 1972 .

[18]  A. A. Westenberg,et al.  Rates of CO + OH and H2 + OH over an extended temperature range , 1973 .

[19]  K. Evenson,et al.  Infrared Resonance of OH With the H 2 O Laser: A Galactic Maser Pump? , 1970 .

[20]  F. Stuhl,et al.  Pulsed Vacuum‐uv Photochemical Study of Reactions of OH with H2, D2, and CO Using a Resonance‐Fluorescent Detection Method , 1972 .

[21]  W. Tomlinson,et al.  The water-vapor laser , 1969 .

[22]  M. Mizushima,et al.  Electron Paramagnetic Resonance Absorption in Oxygen with the HCN Laser , 1968 .

[23]  I. Smith,et al.  Rate measurements of reactions of OH by resonance absorption. Part 2.—Reactions of OH with CO, C2H4 and C2H2 , 1972 .

[24]  J. Heicklen,et al.  The reaction of OH with NO2 and the deactivation of O(1D) by CO , 1972 .

[25]  R. W. Carr,et al.  Use of tubular flow reactors for kinetic studies over extended pressure ranges , 1971 .

[26]  N. Greiner Hydroxyl‐Radical Kinetics by Kinetic Spectroscopy. I. Reactions with H2, CO, and CH4 at 300°K , 1967 .

[27]  B. Stevens,et al.  Progress in reaction kinetics , 1961 .

[28]  W. E. Wilson,et al.  Studies of Hydroxyl Radical Kinetics by Quantitative ESR , 1966 .

[29]  W. E. Wilson,et al.  Mass‐Spectrometric Study of the Reaction Rate of OH with Itself and with CO , 1967 .

[30]  K. Evenson,et al.  A New LEPR Spectrometer , 1970 .

[31]  M. Mizushima,et al.  Laser Magnetic Resonance of the NO Molecule Using 78-, 79-, and 119-μm H 2 O Laser Lines , 1972 .