Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies

[1]  D. Craig,et al.  Transcriptomics , 2020, Nature Biotechnology.

[2]  F. Jamali,et al.  Single dose pharmacokinetics and bioavailability of glucosamine in the rat. , 2002, Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques.

[3]  Principal Investigators,et al.  Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris , 2018 .

[4]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection , 2018, J. Open Source Softw..

[5]  P. Verstreken,et al.  A Single-Cell Transcriptome Atlas of the Aging Drosophila Brain , 2018, Cell.

[6]  Ambrose J. Carr,et al.  Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment , 2018, Cell.

[7]  Luyi Tian,et al.  scPipe: A flexible R/Bioconductor preprocessing pipeline for single-cell RNA-sequencing data , 2018, PLoS Comput. Biol..

[8]  Lucas E. Wange,et al.  Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq , 2018, Nature Communications.

[9]  Kevin R. Moon,et al.  Recovering Gene Interactions from Single-Cell Data Using Data Diffusion , 2018, Cell.

[10]  Christoph Ziegenhain,et al.  zUMIs - A fast and flexible pipeline to process RNA sequencing data with UMIs , 2017, bioRxiv.

[11]  Omri Wurtzel,et al.  Cell type transcriptome atlas for the planarian Schmidtea mediterranea , 2018, Science.

[12]  Lai Guan Ng,et al.  Evaluation of UMAP as an alternative to t-SNE for single-cell data , 2018, bioRxiv.

[13]  Laleh Haghverdi,et al.  Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors , 2018, Nature Biotechnology.

[14]  M. Hemberg,et al.  scmap: projection of single-cell RNA-seq data across data sets , 2018, Nature Methods.

[15]  Yvan Saeys,et al.  A comparison of single-cell trajectory inference methods: towards more accurate and robust tools , 2018, bioRxiv.

[16]  Charlotte Soneson,et al.  Bias, robustness and scalability in single-cell differential expression analysis , 2018, Nature Methods.

[17]  S. Orkin,et al.  Mapping the Mouse Cell Atlas by Microwell-Seq , 2018, Cell.

[18]  I. Nikaido,et al.  Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs , 2018, Nature Communications.

[19]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[20]  David J. Jörg,et al.  Defining murine organogenesis at single cell resolution reveals a role for the leukotriene pathway in regulating blood progenitor formation , 2018, Nature Cell Biology.

[21]  Richard H. Scheuermann,et al.  Equivalent high-resolution identification of neuronal cell types with single-nucleus and single-cell RNA-sequencing , 2017, bioRxiv.

[22]  Chun Jimmie Ye,et al.  Multiplexed droplet single-cell RNA-sequencing using natural genetic variation , 2017, Nature Biotechnology.

[23]  Ze-Guang Han,et al.  Single-cell RNA-Seq analysis reveals dynamic trajectories during mouse liver development , 2017, BMC Genomics.

[24]  John C. Marioni,et al.  Pluripotent state transitions coordinate morphogenesis in mouse and human embryos , 2017, Nature.

[25]  Phuong Dao,et al.  Single-Cell Immune Map of Breast Carcinoma Reveals Diverse Phenotypic States Driven by the Tumor Microenvironment , 2017, bioRxiv.

[26]  Joseph T. Roland,et al.  Unsupervised Trajectory Analysis of Single-Cell RNA-Seq and Imaging Data Reveals Alternative Tuft Cell Origins in the Gut. , 2017, Cell systems.

[27]  Shawn M. Gillespie,et al.  Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer , 2017, Cell.

[28]  Yarden Katz,et al.  A single-cell survey of the small intestinal epithelium , 2017, Nature.

[29]  Itai Yanai,et al.  scDual-Seq: mapping the gene regulatory program of Salmonella infection by host and pathogen single-cell RNA-sequencing , 2017, Genome Biology.

[30]  Luke Zappia,et al.  Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database , 2017, bioRxiv.

[31]  Aleksandar Janjic,et al.  mcSCRB-seq: sensitive and powerful single-cell RNA sequencing , 2017, bioRxiv.

[32]  Fabian J. Theis,et al.  Assessment of batch-correction methods for scRNA-seq data with a new test metric , 2017, bioRxiv.

[33]  O. Stegle,et al.  Single-cell epigenomics: Recording the past and predicting the future , 2017, Science.

[34]  Lars E. Borm,et al.  The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing , 2017, Science.

[35]  S. Quake,et al.  Single-Cell Analysis of Human Pancreas Reveals Transcriptional Signatures of Aging and Somatic Mutation Patterns , 2017, Cell.

[36]  Giovanni Iacono,et al.  bigSCale: an analytical framework for big-scale single-cell data , 2017, bioRxiv.

[37]  A. van Oudenaarden,et al.  Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations , 2017, Nature Methods.

[38]  Jafar S. Jabbari,et al.  Single cell RNA sequencing of stem cell-derived retinal ganglion cells , 2018, Scientific Data.

[39]  Mattias Hansson,et al.  Single-Cell Gene Expression Analysis of a Human ESC Model of Pancreatic Endocrine Development Reveals Different Paths to β-Cell Differentiation , 2017, Stem cell reports.

[40]  Hannah A. Pliner,et al.  Reversed graph embedding resolves complex single-cell trajectories , 2017, Nature Methods.

[41]  Aviv Regev,et al.  Massively-parallel single nucleus RNA-seq with DroNc-seq , 2017, Nature Methods.

[42]  Berthold Göttgens,et al.  Single-cell RNA-sequencing reveals a distinct population of proglucagon-expressing cells specific to the mouse upper small intestine , 2017, Molecular metabolism.

[43]  H. Swerdlow,et al.  Large-scale simultaneous measurement of epitopes and transcriptomes in single cells , 2017, Nature Methods.

[44]  I. Nikaido,et al.  Quartz-Seq2: a high-throughput single-cell RNA-sequencing method that effectively uses limited sequence reads , 2017, bioRxiv.

[45]  Cole Trapnell,et al.  Scalable and efficient single-cell DNA methylation sequencing by combinatorial indexing , 2017, bioRxiv.

[46]  Camille Stephan-Otto Attolini,et al.  Mex3a Marks a Slowly Dividing Subpopulation of Lgr5+ Intestinal Stem Cells. , 2017, Cell stem cell.

[47]  J. Aerts,et al.  SCENIC: Single-cell regulatory network inference and clustering , 2017, Nature Methods.

[48]  Wei Vivian Li,et al.  scImpute: accurate and robust imputation for single cell RNA-seq data , 2017, bioRxiv.

[49]  G. Sanguinetti,et al.  scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells , 2018, Nature Communications.

[50]  R. Sandberg,et al.  Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia , 2017, Nature Medicine.

[51]  Fabian J Theis,et al.  The Human Cell Atlas , 2017, bioRxiv.

[52]  T. Tuschl,et al.  Single cell RNA sequencing to dissect the molecular heterogeneity in lupus nephritis. , 2017, JCI insight.

[53]  Rebecca Hodge,et al.  STRT-seq-2i: dual-index 5ʹ single cell and nucleus RNA-seq on an addressable microwell array , 2017, bioRxiv.

[54]  M. Newton,et al.  SCnorm: robust normalization of single-cell RNA-seq data , 2017, Nature Methods.

[55]  David A. Weitz,et al.  Scaling by shrinking: empowering single-cell 'omics' with microfluidic devices , 2017, Nature Reviews Genetics.

[56]  N. Hacohen,et al.  Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors , 2017, Science.

[57]  Nikolaus Rajewsky,et al.  The Drosophila embryo at single-cell transcriptome resolution , 2017, Science.

[58]  L. Penland,et al.  High fidelity hypothermic preservation of primary tissues in organ transplant preservative for single cell transcriptome analysis , 2017, bioRxiv.

[59]  I. Amit,et al.  Single-cell transcriptome conservation in cryopreserved cells and tissues , 2016, Genome Biology.

[60]  I. Hellmann,et al.  Comparative Analysis of Single-Cell RNA Sequencing Methods , 2016, bioRxiv.

[61]  J. C. Love,et al.  Seq-Well: A Portable, Low-Cost Platform for High-Throughput Single-Cell RNA-Seq of Low-Input Samples , 2017 .

[62]  S. Linnarsson,et al.  Single-cell mRNA isoform diversity in the mouse brain , 2017, BMC Genomics.

[63]  Richard A. Muscat,et al.  Scaling single cell transcriptomics through split pool barcoding , 2017, bioRxiv.

[64]  Andrew C. Adey,et al.  Single-Cell Transcriptional Profiling of a Multicellular Organism , 2017 .

[65]  Salah Ayoub,et al.  Cell fixation and preservation for droplet-based single-cell transcriptomics , 2017, bioRxiv.

[66]  Andrew J. Hill,et al.  Single-cell mRNA quantification and differential analysis with Census , 2017, Nature Methods.

[67]  I. Amit,et al.  Single-cell spatial reconstruction reveals global division of labor in the mammalian liver , 2016, Nature.

[68]  Allon M. Klein,et al.  Single-cell barcoding and sequencing using droplet microfluidics , 2016, Nature Protocols.

[69]  B. Stripp,et al.  Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. , 2016, JCI insight.

[70]  Wilko Weichert,et al.  Single-Cell Analysis Uncovers Clonal Acinar Cell Heterogeneity in the Adult Pancreas. , 2016, Developmental cell.

[71]  Mariella G. Filbin,et al.  Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma , 2016, Nature.

[72]  Rickard Sandberg,et al.  Single-cell sequencing of the small-RNA transcriptome , 2016, Nature Biotechnology.

[73]  Mauro J. Muraro,et al.  A Single-Cell Transcriptome Atlas of the Human Pancreas , 2016, Cell systems.

[74]  Samuel L. Wolock,et al.  A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure. , 2016, Cell systems.

[75]  D. M. Smith,et al.  Single-Cell Transcriptome Profiling of Human Pancreatic Islets in Health and Type 2 Diabetes , 2016, Cell metabolism.

[76]  Maria Kasper,et al.  Single-Cell Transcriptomics Reveals that Differentiation and Spatial Signatures Shape Epidermal and Hair Follicle Heterogeneity , 2016, Cell systems.

[77]  Hazen P Babcock,et al.  High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization , 2016, Proceedings of the National Academy of Sciences.

[78]  Valentine Svensson,et al.  Power Analysis of Single Cell RNA-Sequencing Experiments , 2016, Nature Methods.

[79]  M. Schaub,et al.  SC3 - consensus clustering of single-cell RNA-Seq data , 2016, Nature Methods.

[80]  Cynthia C. Hession,et al.  Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons , 2016, Science.

[81]  Aaron T. L. Lun,et al.  Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R , 2017, Bioinform..

[82]  Marco Mignardi,et al.  Fourth Generation of Next‐Generation Sequencing Technologies: Promise and Consequences , 2016, Human mutation.

[83]  Mauro J. Muraro,et al.  De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data , 2016, Cell stem cell.

[84]  Evan Z. Macosko,et al.  Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics , 2016, Cell.

[85]  Grace X. Y. Zheng,et al.  Massively parallel digital transcriptional profiling of single cells , 2016, Nature Communications.

[86]  William Stafford Noble,et al.  Massively multiplex single-cell Hi-C , 2016, Nature Methods.

[87]  Hongkai Ji,et al.  TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis , 2016, Nucleic acids research.

[88]  Keegan D. Korthauer,et al.  A statistical approach for identifying differential distributions in single-cell RNA-seq experiments , 2016, Genome Biology.

[89]  A. Heger,et al.  UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy , 2016, bioRxiv.

[90]  Shuqiang Li,et al.  CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq , 2016, Genome Biology.

[91]  J. Marioni,et al.  Pooling across cells to normalize single-cell RNA sequencing data with many zero counts , 2016, Genome Biology.

[92]  Jonathan Y. Hsu,et al.  Nuclear RNA-seq of single neurons reveals molecular signatures of activation , 2016, Nature Communications.

[93]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[94]  Charles H. Yoon,et al.  Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq , 2016, Science.

[95]  Anneliese O. Speak,et al.  T cell fate and clonality inference from single cell transcriptomes , 2016, Nature Methods.

[96]  Cuong To,et al.  Miniaturization Technologies for Efficient Single-Cell Library Preparation for Next-Generation Sequencing , 2016, Journal of laboratory automation.

[97]  Sara B. Linker,et al.  Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons , 2016, Nature Protocols.

[98]  Aleksandra A. Kolodziejczyk,et al.  Classification of low quality cells from single-cell RNA-seq data , 2016, Genome Biology.

[99]  I. Amit,et al.  Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors , 2016, Cell.

[100]  C. Ponting,et al.  Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity , 2015, Nature Methods.

[101]  Hui Wang,et al.  SINCERA: A Pipeline for Single-Cell RNA-Seq Profiling Analysis , 2015, PLoS Comput. Biol..

[102]  Joseph L. Herman,et al.  Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis , 2015, Nature Methods.

[103]  Fabian J. Theis,et al.  Diffusion maps for high-dimensional single-cell analysis of differentiation data , 2015, Bioinform..

[104]  Hans Clevers,et al.  Single-cell messenger RNA sequencing reveals rare intestinal cell types , 2015, Nature.

[105]  Howard Y. Chang,et al.  Single-cell chromatin accessibility reveals principles of regulatory variation , 2015, Nature.

[106]  P. Linsley,et al.  MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data , 2015, Genome Biology.

[107]  Chen Xu,et al.  Identification of cell types from single-cell transcriptomes using a novel clustering method , 2015, Bioinform..

[108]  Catalina A. Vallejos,et al.  BASiCS: Bayesian Analysis of Single-Cell Sequencing Data , 2015, PLoS Comput. Biol..

[109]  Andrew C. Adey,et al.  Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing , 2015, Science.

[110]  Allon M. Klein,et al.  Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells , 2015, Cell.

[111]  Aleksandra A. Kolodziejczyk,et al.  The technology and biology of single-cell RNA sequencing. , 2015, Molecular cell.

[112]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[113]  C. Ponting,et al.  G&T-seq: parallel sequencing of single-cell genomes and transcriptomes , 2015, Nature Methods.

[114]  Camille Stephan-Otto Attolini,et al.  Stromal gene expression defines poor-prognosis subtypes in colorectal cancer , 2015, Nature Genetics.

[115]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression , 2015, Nature Biotechnology.

[116]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[117]  Åsa K. Björklund,et al.  Tn5 transposase and tagmentation procedures for massively scaled sequencing projects , 2014, Genome research.

[118]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[119]  P. Kharchenko,et al.  Bayesian approach to single-cell differential expression analysis , 2014, Nature Methods.

[120]  Aaron M. Streets,et al.  Microfluidic single-cell whole-transcriptome sequencing , 2014, Proceedings of the National Academy of Sciences.

[121]  Sean C. Bendall,et al.  Single-Cell Trajectory Detection Uncovers Progression and Regulatory Coordination in Human B Cell Development , 2014, Cell.

[122]  N. Neff,et al.  Reconstructing lineage hierarchies of the distal lung epithelium using single cell RNA-seq , 2014, Nature.

[123]  D. Cacchiarelli,et al.  Characterization of directed differentiation by high-throughput single-cell RNA-Seq , 2014, bioRxiv.

[124]  I. Amit,et al.  Massively Parallel Single-Cell RNA-Seq for Marker-Free Decomposition of Tissues into Cell Types , 2014, Science.

[125]  Åsa K. Björklund,et al.  Full-length RNA-seq from single cells using Smart-seq2 , 2014, Nature Protocols.

[126]  Pawel Zajac,et al.  Base Preferences in Non-Templated Nucleotide Incorporation by MMLV-Derived Reverse Transcriptases , 2013, PloS one.

[127]  Gioele La Manno,et al.  Quantitative single-cell RNA-seq with unique molecular identifiers , 2013, Nature Methods.

[128]  N. Neff,et al.  Quantitative assessment of single-cell RNA-sequencing methods , 2013, Nature Methods.

[129]  Aleksandra A. Kolodziejczyk,et al.  Accounting for technical noise in single-cell RNA-seq experiments , 2013, Nature Methods.

[130]  Åsa K. Björklund,et al.  Smart-seq2 for sensitive full-length transcriptome profiling in single cells , 2013, Nature Methods.

[131]  Carolina Wählby,et al.  In situ sequencing for RNA analysis in preserved tissue and cells , 2013, Nature Methods.

[132]  S. Tai,et al.  Complete disassociation of adult pancreas into viable single cells through cold trypsin-EDTA digestion , 2013, Journal of Zhejiang University SCIENCE B.

[133]  H. Ueda,et al.  Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity , 2013, Genome Biology.

[134]  Alexander van Oudenaarden,et al.  Single molecule fluorescent in situ hybridization (smFISH) of C. elegans worms and embryos. , 2012, WormBook : the online review of C. elegans biology.

[135]  T. Hashimshony,et al.  CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. , 2012, Cell reports.

[136]  D. Bruder,et al.  Impact of enzymatic tissue disintegration on the level of surface molecule expression and immune cell function. , 2012, European journal of microbiology & immunology.

[137]  R. Sandberg,et al.  Full-Length mRNA-Seq from single cell levels of RNA and individual circulating tumor cells , 2012, Nature Biotechnology.

[138]  Pawel Zajac,et al.  Highly multiplexed and strand-specific single-cell RNA 5′ end sequencing , 2012, Nature Protocols.

[139]  Davis J. McCarthy,et al.  Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation , 2012, Nucleic acids research.

[140]  Wei Liu,et al.  Sample preparation method for isolation of single‐cell types from mouse liver for proteomic studies , 2011, Proteomics.

[141]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[142]  Arnoud Sonnenberg,et al.  Integrin α6β4 identifies an adult distal lung epithelial population with regenerative potential in mice. , 2011, The Journal of clinical investigation.

[143]  Hans Clevers,et al.  The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. , 2011, Cell stem cell.

[144]  P. Robinson,et al.  Whole-exome sequencing for finding de novo mutations in sporadic mental retardation , 2010, Genome Biology.

[145]  H. Abdi,et al.  Principal component analysis , 2010 .

[146]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[147]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[148]  M. Robinson,et al.  A scaling normalization method for differential expression analysis of RNA-seq data , 2010, Genome Biology.

[149]  Sandrine Dudoit,et al.  Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments , 2010, BMC Bioinformatics.

[150]  Peter Lindblad,et al.  A guide for in-house design of template-switch-based 5' rapid amplification of cDNA ends systems. , 2010, Analytical biochemistry.

[151]  Catalin C. Barbacioru,et al.  mRNA-Seq whole-transcriptome analysis of a single cell , 2009, Nature Methods.

[152]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[153]  M. Grompe,et al.  Surface markers for the murine oval cell response , 2008, Hepatology.

[154]  David E Draper,et al.  Effects of osmolytes on RNA secondary and tertiary structure stabilities and RNA-Mg2+ interactions. , 2007, Journal of Molecular Biology.

[155]  R. Ivell,et al.  A highly efficient method for long-chain cDNA synthesis using trehalose and betaine. , 2002, Analytical biochemistry.

[156]  N Sasaki,et al.  Thermostabilization and thermoactivation of thermolabile enzymes by trehalose and its application for the synthesis of full length cDNA. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[157]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[158]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[159]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.