A characterization of effective topological spaces

Starting with D. Scott's work on the mathematical foundations of programming language semantics, interest in topology has grown up in theoretical computer science, under the slogan "open sets are semidecidable properties". But whereas on Scott domains all such properties are also open, this is no longer true in general. In this paper we present a characterization of effectively given topological spaces that says which semidecidable sets are open. We consider countable topological To-spaces that satisfy certain additional topological and computational requirements which can be verified for a general class of Scott domains and metric spaces, and we show that the given topology is the recursively finest topology generated by semidecidable sets which is compatible with it. From this general result we derive the above mentioned theorem about the correspondence of the semidecidable properties with the Scott open sets. This theorem, in its turn, is a generalization of the Rice/Shapiro theorem on index sets of classes of recursively enumerable sets. Moreover, characterizations of the canonical topology of a recursively separable recursive metric space are derived. It is shown that it is the recursively finest effective T3-topology that can be generated by semidecidable sets the topological complement of which is also semidecidable.

[1]  Iraj Kalantari,et al.  Effective topological spaces II: A hierarchy , 1985, Ann. Pure Appl. Log..

[2]  Michael B. Smyth,et al.  Quasi Uniformities: Reconciling Domains with Metric Spaces , 1987, MFPS.

[3]  P. Young,et al.  Effective operators in a topological setting , 1984 .

[4]  Dana S. Scott,et al.  Lectures on a Mathematical Theory of Computation , 1982 .

[5]  Li Xiang Everywhere Nonrecursive r.e. Sets in Recursively Presented Topological Spaces , 1988 .

[6]  I. Kalantari Major Subsets in Effective Topology , 1982 .

[7]  William C. Rounds,et al.  Connections Between Two Theories of Concurrency: Metric Spaces and Synchronization Trees , 1983, Inf. Control..

[8]  Claude E. Shannon,et al.  Computers and Automata , 1953, Proceedings of the IRE.

[9]  Iraj Kalantari,et al.  Effective topological spaces III: Forcing and definability , 1987, Ann. Pure Appl. Log..

[10]  K. Hofmann,et al.  A Compendium of Continuous Lattices , 1980 .

[11]  Dana S. Scott,et al.  Data Types as Lattices , 1976, SIAM J. Comput..

[12]  Andrew William Roscoe A mathematical theory of communicating processes , 1982 .

[13]  Pierre America,et al.  Solving Reflexive Domain Equations in a Category of Complete Metric Spaces , 1989, J. Comput. Syst. Sci..

[14]  Iraj Kalantari,et al.  Maximality in Effective Topology , 1983, J. Symb. Log..

[15]  Matthew Hennessy,et al.  A Term Model for CCS , 1980, MFCS.

[16]  Edward Sciore,et al.  Computability theory in admissible domains , 1978, STOC.

[17]  Robert L. Constable,et al.  Computability Concepts for Programming Language Semantics , 1976, Theor. Comput. Sci..

[18]  Philip Hingston Non-Complemented Open Sets in Effective Topology , 1988 .

[19]  Fletcher Quasi-Uniform Spaces , 1982 .

[20]  Ákos Császár,et al.  Foundations of general topology , 1963 .

[21]  S. Vickers Topology via Logic , 1989 .

[22]  Edward Sciore,et al.  Admissible Coherent CPO's , 1978, ICALP.

[23]  Iraj Kalantari,et al.  Simplicity in Effective Topology , 1982, J. Symb. Log..

[24]  Y. Ershov Model of Partial Continuous Functionals , 1977 .

[25]  Jürgen Hauck Konstruktive Darstellungen in Topologischen Räumen mit Rekursiver Basis , 1980, Math. Log. Q..

[26]  Jürgen Hauck Berechenbarkeit in Topologischen Räumen Mit Rekursiver Basis , 1981, Math. Log. Q..

[27]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[28]  Iraj Kalantari,et al.  Recursive Constructions in Topological Spaces , 1979, J. Symb. Log..

[29]  John C. Shepherdson,et al.  Effective operations on partial recursive functions , 1955 .

[30]  Y. Moschovakis Recursive metric spaces , 1964 .

[31]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[32]  P. M. Cohn,et al.  THE METAMATHEMATICS OF ALGEBRAIC SYSTEMS , 1972 .

[33]  David Michael Ritchie Park,et al.  When are two Effectively given Domains Identical? , 1979, Theoretical Computer Science.

[34]  Yu. L. Ershov,et al.  The theory of A-spaces , 1973 .

[35]  Jeffrey B. Remmel,et al.  Degrees of Recursively Enumerable Topological Spaces , 1983, J. Symb. Log..

[36]  Robin Milner,et al.  An Algebraic Theory for Synchronization , 1979, Theoretical Computer Science.

[37]  Iraj Kalantari,et al.  Effective topological spaces I: a definability theory , 1985, Ann. Pure Appl. Log..

[38]  Michael B. Smyth,et al.  Effectively given Domains , 1977, Theor. Comput. Sci..

[39]  Peter Lucas,et al.  Formal Semantics of Programming Languages: VDL , 1981, IBM J. Res. Dev..

[40]  Benjamin Franklin Wells,et al.  The Mathematics of Algebraic Systems, Collected Papers 1936-1967 , 1975 .

[41]  D. Scott Models for Various Type-Free Calculi , 1973 .

[42]  Glynn Winskel,et al.  Seminar on Concurrency , 1984, Lecture Notes in Computer Science.

[43]  Patrick Suppes,et al.  Logic, Methodology and Philosophy of Science , 1963 .

[44]  Sören Stenlund Computable Functionals of Finite Type , 1972 .

[45]  J. W. de Bakker,et al.  Processes and the Denotational Semantics of Concurrency , 1982, Inf. Control..

[46]  Ionel Bucur,et al.  Toposes, Algebraic Geometry and Logic , 1972 .

[47]  E. Yu. Nogina Relations between certain classes of effectively topological spaces , 1969 .

[48]  William C. Rounds Applications of Topology to Semantics of Communicating Processes , 1984, Seminar on Concurrency.

[49]  Dana S. Scott,et al.  Outline of a Mathematical Theory of Computation , 1970 .

[50]  A. W. Roscoe,et al.  Metric Spaces as Models for Real-Time Concurrency , 1987, MFPS.

[51]  M. Smyth Power Domains and Predicate Transformers: A Topological View , 1983, ICALP.