QuadriFlow: A Scalable and Robust Method for Quadrangulation

QuadriFlow is a scalable algorithm for generating quadrilateral surface meshes based on the Instant Field‐Aligned Meshes of Jakob et al. (ACM Trans. Graph. 34(6):189, 2015). We modify the original algorithm such that it efficiently produces meshes with many fewer singularities. Singularities in quadrilateral meshes cause problems for many applications, including parametrization and rendering with Catmull‐Clark subdivision surfaces. Singularities can rarely be entirely eliminated, but it is possible to keep their number small. Local optimization algorithms usually produce meshes with many singularities, whereas the best algorithms tend to require non‐local optimization, and therefore are slow. We propose an efficient method to minimize singularities by combining the Instant Meshes objective with a system of linear and quadratic constraints. These constraints are enforced by solving a global minimum‐cost network flow problem and local boolean satisfiability problems. We have verified the robustness and efficiency of our method on a subset of ShapeNet comprising 17,791 3D objects in the wild. Our evaluation shows that the quality of the quadrangulations generated by our method is as good as, if not better than, those from other methods, achieving about four times fewer singularities than Instant Meshes. Other algorithms that produce similarly few singularities are much slower; we take less than ten seconds to process each model. Our source code is publicly available.

[1]  Sehoon Ha,et al.  Iterative Training of Dynamic Skills Inspired by Human Coaching Techniques , 2014, ACM Trans. Graph..

[2]  Leif Kobbelt,et al.  A Robust Two‐Step Procedure for Quad‐Dominant Remeshing , 2006, Comput. Graph. Forum.

[3]  Bruno Lévy,et al.  N-symmetry direction field design , 2008, TOGS.

[4]  Daniele Panozzo,et al.  libigl: prototyping geometry processing research in C++ , 2017, SIGGRAPH ASIA.

[5]  David Bommes,et al.  Mixed-integer quadrangulation , 2009, SIGGRAPH '09.

[6]  David Bommes,et al.  Quantized global parametrization , 2015, ACM Trans. Graph..

[7]  Denis Zorin,et al.  Robust field-aligned global parametrization , 2014, ACM Trans. Graph..

[8]  Denis Zorin,et al.  Strict minimizers for geometric optimization , 2014, ACM Trans. Graph..

[9]  Shi-Min Hu,et al.  Metric-Driven RoSy Field Design and Remeshing , 2010, IEEE Transactions on Visualization and Computer Graphics.

[10]  Olga Sorkine-Hornung,et al.  Integrable PolyVector fields , 2015, ACM Trans. Graph..

[11]  Bruno Lévy,et al.  Quad‐Mesh Generation and Processing: A Survey , 2013, Comput. Graph. Forum.

[12]  Marc Pouget,et al.  Estimating differential quantities using polynomial fitting of osculating jets , 2003, Comput. Aided Geom. Des..

[13]  Daniele Panozzo,et al.  Practical quad mesh simplification , 2010, Comput. Graph. Forum.

[14]  Leonidas J. Guibas,et al.  ShapeNet: An Information-Rich 3D Model Repository , 2015, ArXiv.

[15]  Marcel Campen,et al.  Interactively controlled quad remeshing of high resolution 3D models , 2016, ACM Trans. Graph..

[16]  Hujun Bao,et al.  Frame field generation through metric customization , 2015, ACM Trans. Graph..

[17]  Hujun Bao,et al.  A wave-based anisotropic quadrangulation method , 2010, ACM Trans. Graph..

[18]  P. Knupp,et al.  Mesh generation using vector-fields , 1995 .

[19]  S. Owen,et al.  H-Morph: an indirect approach to advancing front hex meshing , 1999 .

[20]  Olga Sorkine-Hornung,et al.  Instant field-aligned meshes , 2015, ACM Trans. Graph..

[21]  Keenan Crane,et al.  Globally optimal direction fields , 2013, ACM Trans. Graph..

[22]  Krzysztof Czarnecki,et al.  Learning Rate Based Branching Heuristic for SAT Solvers , 2016, SAT.

[23]  Péter Kovács,et al.  LEMON - an Open Source C++ Graph Template Library , 2011, WGT@ETAPS.

[24]  Zohar Levi,et al.  Bounded distortion parametrization in the space of metrics , 2016, ACM Trans. Graph..

[25]  Olga Sorkine-Hornung,et al.  Designing N‐PolyVector Fields with Complex Polynomials , 2014, Comput. Graph. Forum.

[26]  Valerio Pascucci,et al.  Spectral surface quadrangulation , 2006, SIGGRAPH '06.

[27]  Pierre Alliez,et al.  Periodic global parameterization , 2006, TOGS.

[28]  Keenan Crane,et al.  Trivial Connections on Discrete Surfaces , 2010, Comput. Graph. Forum.

[29]  David Bommes,et al.  QEx: robust quad mesh extraction , 2013, ACM Trans. Graph..

[30]  David Cohen-Steiner,et al.  Restricted delaunay triangulations and normal cycle , 2003, SCG '03.

[31]  Pierre Alliez,et al.  Integer-grid maps for reliable quad meshing , 2013, ACM Trans. Graph..

[32]  Denis Zorin,et al.  Controlled-distortion constrained global parametrization , 2013, ACM Trans. Graph..

[33]  D. Zorin,et al.  4-8 Subdivision , 2001 .

[34]  David Bommes,et al.  Level-of-detail quad meshing , 2014, ACM Trans. Graph..

[35]  Bruno Lévy,et al.  Geometry-aware direction field processing , 2009, TOGS.

[36]  Aaron Hertzmann,et al.  Illustrating smooth surfaces , 2000, SIGGRAPH.

[37]  Hujun Bao,et al.  Spectral Quadrangulation with Feature Curve Alignment and Element Size Control , 2014, ACM Trans. Graph..

[38]  J. Remacle,et al.  Blossom‐Quad: A non‐uniform quadrilateral mesh generator using a minimum‐cost perfect‐matching algorithm , 2012 .

[39]  M. Klein A Primal Method for Minimal Cost Flows with Applications to the Assignment and Transportation Problems , 1966 .

[40]  Konrad Polthier,et al.  QuadCover ‐ Surface Parameterization using Branched Coverings , 2007, Comput. Graph. Forum.

[41]  James B. Orlin,et al.  A polynomial time primal network simplex algorithm for minimum cost flows , 1996, SODA '96.

[42]  Leonidas J. Guibas,et al.  Robust Watertight Manifold Surface Generation Method for ShapeNet Models , 2018, ArXiv.

[43]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[44]  Jarek Rossignac,et al.  SQuad: Compact Representation for Triangle Meshes , 2011, Comput. Graph. Forum.

[45]  Shi-Min Hu,et al.  An incremental approach to feature aligned quad dominant remeshing , 2008, SPM '08.

[46]  Pierre Alliez,et al.  Anisotropic polygonal remeshing , 2003, ACM Trans. Graph..

[47]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.