Straightforward and Controlled Shape Access to Efficient Macrocyclic Imidazolylboronium Anion Receptors.

A straightforward synthesis of air- and water-stable bis-cationic macrocyclic imidazolylboronium anion receptors is described herein. By taking advantage of the bulky and rigid 9-borabicyclo[3.3.1]-nonane (9-BBN) attaching point and a well-designed bis-imidazolylaryl, highly stable dimeric imidazolylboronium macrocycles were synthesized. Additionally, NMR spectroscopy ((1) H, DOSY, and HOESY), mass spectrometry (MS), and X-ray diffraction studies revealed that these macrocyclic scaffolds can bind several monoanions with high association constants in DMSO, and are particularly sensitive for the MS detection of anions (with concentrations in the nm range). This anion/receptor interaction involves eight C-H binding sites, which include Csp2 -H and unusual Csp3 -H hydrogen-bonding donors.

[1]  S. Luis,et al.  Macrocyclization Reactions: The Importance of Conformational, Configurational, and Template-Induced Preorganization. , 2015, Chemical reviews.

[2]  Claudia Caltagirone,et al.  Applications of Supramolecular Anion Recognition. , 2015, Chemical reviews.

[3]  M. Toure,et al.  Synthesis and structure of Ag(I), Pd(II), Rh(I), Ru(II) and Au(I) NHC-complexes with a pendant Lewis acidic boronic ester moiety. , 2015, Dalton transactions.

[4]  Nicholas H. A. Evans,et al.  Supramolekulare Chemie von Anionen: von der Erkennung zur chemischen Anwendung , 2014 .

[5]  P. Beer,et al.  Advances in anion supramolecular chemistry: from recognition to chemical applications. , 2014, Angewandte Chemie.

[6]  P. Beer,et al.  Halotriazolium axle functionalised [2]rotaxanes for anion recognition: investigating the effects of halogen-bond donor and preorganisation. , 2014, Chemistry.

[7]  J. Sessler,et al.  Neutral CH and cationic CH donor groups as anion receptors. , 2014, Chemical Society reviews.

[8]  Shuhua Ma,et al.  Formation, Stability, and Structures of Borenium and Boronium Cations Derived from Pentamethylazaferrocene–Boranes by Hydride or Chloride Abstraction Reactions , 2014 .

[9]  Juyoung Yoon,et al.  Recent advances in development of chiral fluorescent and colorimetric sensors. , 2014, Chemical reviews.

[10]  Cally J E Haynes,et al.  Anion receptor chemistry: highlights from 2011 and 2012. , 2014, Chemical Society reviews.

[11]  Paulo J. Costa,et al.  Increased halide recognition strength by enhanced intercomponent preorganisation in triazolium containing [2]rotaxanes. , 2013, Chemistry.

[12]  Hongjun Zhou,et al.  Highly selective fluorescent recognition of sulfate in water by two rigid tetrakisimidazolium macrocycles with peripheral chains. , 2013, Journal of the American Chemical Society.

[13]  S. Denmark,et al.  Lewis Base Activation of Lewis Acids - Group 13. In Situ Generation and Reaction of Borenium Ions. , 2013, Organometallics.

[14]  V. Lynch,et al.  "Texas-sized" molecular boxes: building blocks for the construction of anion-induced supramolecular species via self-assembly. , 2013, Journal of the American Chemical Society.

[15]  C. R. Murdock,et al.  Employing Dianionic Macrocyclic Tetracarbenes To Synthesize Neutral Divalent Metal Complexes , 2013 .

[16]  F. Marken,et al.  Exploiting the reversible covalent bonding of boronic acids: recognition, sensing, and assembly. , 2013, Accounts of chemical research.

[17]  K. Rissanen,et al.  Highlights on contemporary recognition and sensing of fluoride anion in solution and in the solid state. , 2013, Chemical Society reviews.

[18]  V. Day,et al.  Chemistry and structure of a host-guest relationship: the power of NMR and X-ray diffraction in tandem. , 2013, Journal of the American Chemical Society.

[19]  I. Youn,et al.  An imidazolium-based fluorescent cyclophane for the selective recognition of iodide. , 2012, Chemistry, an Asian journal.

[20]  Bahareh Shirinfar,et al.  A highly selective fluorescent chemosensor for guanosine-5'-triphosphate via excimer formation in aqueous solution of physiological pH. , 2012, Chemical communications.

[21]  Philip A. Gale,et al.  Anion receptor chemistry: highlights from 2010. , 2012, Chemical Society reviews.

[22]  M. Boiocchi,et al.  Putting the Anion into the Cage – Fluoride Inclusion in the Smallest Trisimidazolium Macrotricycle , 2011 .

[23]  Raghunath O. Ramabhadran,et al.  Two levels of conformational pre-organization consolidate strong CH hydrogen bonds in chloride-triazolophane complexes. , 2011, Chemical communications.

[24]  J. Kampf,et al.  A boronium ion with exceptional electrophilicity. , 2011, Angewandte Chemie.

[25]  P. Beer,et al.  A bidentate halogen-bonding bromoimidazoliophane receptor for bromide ion recognition in aqueous media. , 2011, Angewandte Chemie.

[26]  P. Beer,et al.  A dual-functional tetrakis- imidazolium macrocycle for supramolecular assembly , 2011 .

[27]  Kwang S. Kim,et al.  Induction-driven stabilization of the anion-π interaction in electron-rich aromatics as the key to fluoride inclusion in imidazolium-cage receptors. , 2011, Chemistry.

[28]  D. Armstrong,et al.  Mechanisms of ESI-MS selectivity and sensitivity enhancements when detecting anions in the positive mode using cationic pairing agents. , 2010, Analytical chemistry.

[29]  T. James,et al.  Boron based anion receptors as sensors. , 2010, Chemical Society reviews.

[30]  Jonathan L Sessler,et al.  Ion pair receptors. , 2010, Chemical Society reviews.

[31]  C. Wade,et al.  Fluoride ion complexation and sensing using organoboron compounds. , 2010, Chemical reviews.

[32]  Jonathan L. Sessler,et al.  A 'Texas-sized' molecular box that forms an anion-induced supramolecular necklace. , 2010, Nature chemistry.

[33]  Juyoung Yoon,et al.  Revisit to imidazolium receptors for the recognition of anions: highlighted research during 2006-2009. , 2010, Chemical Society reviews.

[34]  J. Lenhardt,et al.  Anion binding of short, flexible aryl triazole oligomers. , 2009, The Journal of organic chemistry.

[35]  P. Schreiner,et al.  (Thio)urea organocatalysis--what can be learnt from anion recognition? , 2009, Chemical Society reviews.

[36]  Philip A. Gale,et al.  Anion receptor chemistry: highlights from 2007. , 2009, Chemical Society reviews.

[37]  S. Kubik Amino acid containing anion receptors. , 2009, Chemical Society reviews.

[38]  A. Flood,et al.  Strong, size-selective, and electronically tunable C-H...halide binding with steric control over aggregation from synthetically modular, shape-persistent [34]triazolophanes. , 2008, Journal of the American Chemical Society.

[39]  Hao Niu,et al.  Imidazolium-based macrocycles as multisignaling chemosensors for anions. , 2008, Dalton transactions.

[40]  A. Flood,et al.  Pure C-H hydrogen bonding to chloride ions: a preorganized and rigid macrocyclic receptor. , 2008, Angewandte Chemie.

[41]  A. Macchioni,et al.  Determining accurate molecular sizes in solution through NMR diffusion spectroscopy. , 2008, Chemical Society reviews.

[42]  D. Armstrong,et al.  A general, positive ion mode ESI-MS approach for the analysis of singly charged inorganic and organic anions using a dicationic reagent. , 2007, Analytical chemistry.

[43]  L. Pérez-García,et al.  Imidazolium‐Based [14]Heterophanes as Models for Anion Recognition , 2006 .

[44]  S. Upreti,et al.  Novel bile acid-based cyclic bisimidazolium receptors for anion recognition. , 2006, Organic letters.

[45]  Juyoung Yoon,et al.  Imidazolium receptors for the recognition of anions. , 2006, Chemical Society reviews.

[46]  Philip A. Gale Special issue: Anion coordination chemistry II - Preface , 2006 .

[47]  Wallace W. H. Wong,et al.  Tetrakis(imidazolium) macrocyclic receptors for anion binding. , 2005, Organic & biomolecular chemistry.

[48]  K. D. Conroy,et al.  Borinium‐, Borenium‐ und Boroniumionen: Synthese, Reaktivität, Anwendung , 2005 .

[49]  W. Piers,et al.  Borinium, borenium, and boronium ions: synthesis, reactivity, and applications. , 2005, Angewandte Chemie.

[50]  M. T. Reetz,et al.  Mischungen konfigurationsstabiler und fluxionaler atropisomerer einzähniger P-Liganden in der asymmetrischen Rh-katalysierten Olefin-Hydrirung , 2005 .

[51]  M. Reetz,et al.  Mixtures of configurationally stable and fluxional atropisomeric monodentate P ligands in asymmetric Rh-catalyzed olefin hydrogenation. , 2005, Angewandte Chemie.

[52]  J. Steed,et al.  A highly efficient, preorganized macrobicyclic receptor for halides based on CH... and NH...anion interactions. , 2004, Journal of the American Chemical Society.

[53]  H. Pritzkow,et al.  Synthesis, structures and reactivity of macrocyclic imidazolylboranes , 2003 .

[54]  Kwang S. Kim,et al.  Tripodal nitro-imidazolium receptor for anion binding driven by (C-H)+- - -X- hydrogen bonds. , 2002, Organic letters.

[55]  H. Pritzkow,et al.  Synthesis, Structures and Reactivity of N‐Borane‐Protected 1,1′‐Bisimidazoles with Different Bridging Functions , 2002 .

[56]  M. Wagner,et al.  Reactions of ferrocenylboranes with 2,5-bis(pyridyl)pyrazine and quaterpyridine: charge-transfer complexes and redox-active macrocycles , 2002 .

[57]  Alcalde,et al.  Imidazolium molecular motifs located on dicationic frameworks. Electrospray mass spectrometric observation of carbenes: imidazolylidenes , 2000, Rapid communications in mass spectrometry : RCM.

[58]  Kiyoshi Sato,et al.  A new tripodal anion receptor with CH···X− hydrogen bonding , 1999 .

[59]  C. Alvarez-Rúa,et al.  Hydrogen bonded driven anion binding by dicationic [14]imidazoliophanes , 1999 .

[60]  M. Hynes EQNMR : a computer program for the calculation of stability constants from nuclear magnetic resonance chemical shift data , 1993 .

[61]  M. Hawthorne Cyclopropanes from Allylic Chlorides via Hydroborination , 1960 .